Search results
Results from the WOW.Com Content Network
Excess kurtosis, typically compared to a value of 0, characterizes the “tailedness” of a distribution. A univariate normal distribution has an excess kurtosis of 0. Negative excess kurtosis indicates a platykurtic distribution, which doesn’t necessarily have a flat top but produces fewer or less extreme outliers than the normal distribution.
The normal distribution has a skewness of zero. But in reality, data points may not be perfectly symmetric. So, an understanding of the skewness of the dataset indicates whether deviations from the mean are going to be positive or negative. D'Agostino's K-squared test is a goodness-of-fit normality test based on sample skewness and sample kurtosis.
Let X and Y each be normally distributed with correlation coefficient ρ. The cokurtosis terms are (,,,) = +(,,,) = (,,,) =Since the cokurtosis depends only on ρ, which is already completely determined by the lower-degree covariance matrix, the cokurtosis of the bivariate normal distribution contains no new information about the distribution.
The constant 3 ensures that Gaussian signals have zero kurtosis, Super-Gaussian signals have positive kurtosis, and Sub-Gaussian signals have negative kurtosis. The denominator is the variance of , and ensures that the measured kurtosis takes account of signal variance. The goal of projection pursuit is to maximize the kurtosis, and make the ...
The plot of excess kurtosis as a function of the variance and the mean shows that the minimum value of the excess kurtosis (−2, which is the minimum possible value for excess kurtosis for any distribution) is intimately coupled with the maximum value of variance (1/4) and the symmetry condition: the mean occurring at the midpoint (μ = 1/2).
Yes, the continuous uniform distribution U(0,1) is flat-topped and has negative excess kurtosis. But obviously, a single example does not prove the general case. If that were so, we could say, based on the beta(.5,1) distribution, that negative excess kurtosis implies that the pdf is "infinitely pointy."
The kurtosis is here defined to be the standardised fourth moment around the mean. The value of b lies between 0 and 1. [26] The logic behind this coefficient is that a bimodal distribution with light tails will have very low kurtosis, an asymmetric character, or both – all of which increase this coefficient. The formula for a finite sample ...
In statistics and probability theory, the nonparametric skew is a statistic occasionally used with random variables that take real values. [1] [2] It is a measure of the skewness of a random variable's distribution—that is, the distribution's tendency to "lean" to one side or the other of the mean.