Search results
Results from the WOW.Com Content Network
The Computer Vision and Image Processing Algorithm Test and Analysis Tool, CVIP-ATAT, creates human and computer vision applications. Its primary use is to execute algorithms for processing multiple images at a time, incorporating various algorithmic and parameter variations. The program determines a suitable algorithm for pre-processing ...
Computer vision is an interdisciplinary field that deals with how computers can be made to gain high-level understanding from digital images or videos.From the perspective of engineering, it seeks to automate tasks that the human visual system can do.
Computer Vision Annotation Tool (CVAT) is a free, open source, web-based image and video annotation tool used for labeling data for computer vision algorithms. Originally developed by Intel , CVAT is designed for use by a professional data annotation team, with a user interface optimized for computer vision annotation tasks.
The Caltech 101 data set was used to train and test several computer vision recognition and classification algorithms. The first paper to use Caltech 101 was an incremental Bayesian approach to one-shot learning, [ 4 ] an attempt to classify an object using only a few examples, by building on prior knowledge of other classes.
VLFeat, an open source computer vision library in C (with bindings to multiple languages including MATLAB) has an implementation. LBPLibrary is a collection of eleven Local Binary Patterns (LBP) algorithms developed for background subtraction problem. The algorithms were implemented in C++ based on OpenCV.
The CIFAR-10 dataset (Canadian Institute For Advanced Research) is a collection of images that are commonly used to train machine learning and computer vision algorithms. It is one of the most widely used datasets for machine learning research. [1] [2] The CIFAR-10 dataset contains 60,000 32x32 color images in 10 different classes. [3]
The following is a non-complete list of applications which are studied in computer vision. In this category, the term application should be interpreted as a high level function which solves a problem at a higher level of complexity. Typically, the various technical problems related to an application can be solved and implemented in different ways.
General scheme of content-based image retrieval. Content-based image retrieval, also known as query by image content and content-based visual information retrieval (CBVIR), is the application of computer vision techniques to the image retrieval problem, that is, the problem of searching for digital images in large databases (see this survey [1] for a scientific overview of the CBIR field).