Search results
Results from the WOW.Com Content Network
Over the real numbers, a discriminant is equivalent to −1, 0, or 1. Over the rational numbers , a discriminant is equivalent to a unique square-free integer . By a theorem of Jacobi , a quadratic form over a field of characteristic different from 2 can be expressed, after a linear change of variables, in diagonal form as
The discriminant of K is 49 = 7 2. Accordingly, the volume of the fundamental domain is 7 and K is only ramified at 7. In mathematics, the discriminant of an algebraic number field is a numerical invariant that, loosely speaking, measures the size of the (ring of integers of the) algebraic number field.
On the other hand, the maximal real subfields Q(cos(2π/2 n)) of the 2-power cyclotomic fields Q(ζ 2 n) (where n is a positive integer) are known to have class number 1 for n≤8, [8] and it is conjectured that they have class number 1 for all n. Weber showed that these fields have odd class number.
Its discriminant as quadratic form need not be +1 (in fact this happens only for the case K = Q). Define the inverse different or codifferent [ 3 ] [ 4 ] or Dedekind's complementary module [ 5 ] as the set I of x ∈ K such that tr( xy ) is an integer for all y in O K , then I is a fractional ideal of K containing O K .
The following table shows some orders of small discriminant of quadratic fields. The maximal order of an algebraic number field is its ring of integers, and the discriminant of the maximal order is the discriminant of the field. The discriminant of a non-maximal order is the product of the discriminant of the corresponding maximal order by the ...
Since the number of integral ideals of given norm is finite, the finiteness of the class number is an immediate consequence, [1] and further, the ideal class group is generated by the prime ideals of norm at most M K. Minkowski's bound may be used to derive a lower bound for the discriminant of a field K given n, r 1 and r 2.
An Olive Garden breadstick was marked with the letters and a number: OK6. Let the conspiracy theories begin!
Casus irreducibilis (from Latin 'the irreducible case') is the name given by mathematicians of the 16th century to cubic equations that cannot be solved in terms of real radicals, that is to those equations such that the computation of the solutions cannot be reduced to the computation of square and cube roots.