Search results
Results from the WOW.Com Content Network
Conversely, precision can be lost when converting representations from integer to floating-point, since a floating-point type may be unable to exactly represent all possible values of some integer type. For example, float might be an IEEE 754 single precision type, which cannot represent the integer 16777217 exactly, while a 32-bit integer type ...
However, supposing that floating-point comparisons are expensive, and also supposing that float is represented according to the IEEE floating-point standard, and integers are 32 bits wide, we could engage in type punning to extract the sign bit of the floating-point number using only integer operations:
In Python 2 (and most other programming languages), unless explicitly requested, x / y performed integer division, returning a float only if either input was a float. However, because Python is a dynamically-typed language, it was not always possible to tell which operation was being performed, which often led to subtle bugs, thus prompting the ...
A decimal data type could be implemented as either a floating-point number or as a fixed-point number. In the fixed-point case, the denominator would be set to a fixed power of ten. In the floating-point case, a variable exponent would represent the power of ten to which the mantissa of the number is multiplied.
In this example, reinterpret_cast explicitly prevents the compiler from performing a safe conversion from integer to floating-point value. [20] When the program runs it will output a garbage floating-point value. The problem could have been avoided by instead writing float fval = ival;
For example, in the Python programming language, int represents an arbitrary-precision integer which has the traditional numeric operations such as addition, subtraction, and multiplication. However, in the Java programming language , the type int represents the set of 32-bit integers ranging in value from −2,147,483,648 to 2,147,483,647 ...
A floating-point number is a rational number, because it can be represented as one integer divided by another; for example 1.45 × 10 3 is (145/100)×1000 or 145,000 /100. The base determines the fractions that can be represented; for instance, 1/5 cannot be represented exactly as a floating-point number using a binary base, but 1/5 can be ...
Like the binary floating-point formats, the number is divided into a sign, an exponent, and a significand. Unlike binary floating-point, numbers are not necessarily normalized; values with few significant digits have multiple possible representations: 1×10 2 =0.1×10 3 =0.01×10 4, etc. When the significand is zero, the exponent can be any ...