Search results
Results from the WOW.Com Content Network
Knowledge representation and reasoning (KRR, KR&R, or KR²) is a field of artificial intelligence (AI) dedicated to representing information about the world in a form that a computer system can use to solve complex tasks, such as diagnosing a medical condition or having a natural-language dialog.
Frames are the primary data structure used in artificial intelligence frame languages; they are stored as ontologies of sets. Frames are also an extensive part of knowledge representation and reasoning schemes. They were originally derived from semantic networks and are therefore part of structure-based knowledge representations.
In representation learning, knowledge graph embedding (KGE), also referred to as knowledge representation learning (KRL), or multi-relation learning, [1] is a machine learning task of learning a low-dimensional representation of a knowledge graph's entities and relations while preserving their semantic meaning.
In knowledge representation and reasoning, a knowledge graph is a knowledge base that uses a graph-structured data model or topology to represent and operate on data. Knowledge graphs are often used to store interlinked descriptions of entities – objects, events, situations or abstract concepts – while also encoding the free-form semantics ...
This is often used as a form of knowledge representation. It is a directed or undirected graph consisting of vertices , which represent concepts , and edges , which represent semantic relations between concepts , [ 1 ] mapping or connecting semantic fields .
Knowledge representation is closely linked to automatic reasoning because the purpose of knowledge representation formalisms is usually to construct a knowledge base from which inferences are drawn. [211] Influential knowledge base formalisms include logic-based systems, rule-based systems, semantic networks, and frames.
A knowledge-based system (KBS) is a computer program that reasons and uses a knowledge base to solve complex problems. Knowledge-based systems were the focus of early artificial intelligence researchers in the 1980s. The term can refer to a broad range of systems.
In artificial intelligence, symbolic artificial intelligence (also known as classical artificial intelligence or logic-based artificial intelligence) [1] [2] is the term for the collection of all methods in artificial intelligence research that are based on high-level symbolic (human-readable) representations of problems, logic and search. [3]