enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Generalization error - Wikipedia

    en.wikipedia.org/wiki/Generalization_error

    Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file

  3. Probability of error - Wikipedia

    en.wikipedia.org/wiki/Probability_of_error

    This statistics -related article is a stub. You can help Wikipedia by expanding it.

  4. Bayes error rate - Wikipedia

    en.wikipedia.org/wiki/Bayes_error_rate

    This statistics -related article is a stub. You can help Wikipedia by expanding it.

  5. Monty Hall problem - Wikipedia

    en.wikipedia.org/wiki/Monty_Hall_problem

    The errors of omission vs. errors of commission effect, [30] in which, all other things being equal, people prefer to make errors by inaction (Stay) as opposed to action (Switch). Experimental evidence confirms that these are plausible explanations that do not depend on probability intuition.

  6. Bernoulli trial - Wikipedia

    en.wikipedia.org/wiki/Bernoulli_trial

    Graphs of probability P of not observing independent events each of probability p after n Bernoulli trials vs np for various p.Three examples are shown: Blue curve: Throwing a 6-sided die 6 times gives a 33.5% chance that 6 (or any other given number) never turns up; it can be observed that as n increases, the probability of a 1/n-chance event never appearing after n tries rapidly converges to 0.

  7. Law of truly large numbers - Wikipedia

    en.wikipedia.org/wiki/Law_of_truly_large_numbers

    The law of truly large numbers (a statistical adage), attributed to Persi Diaconis and Frederick Mosteller, states that with a large enough number of independent samples, any highly implausible (i.e. unlikely in any single sample, but with constant probability strictly greater than 0 in any sample) result is likely to be observed. [1]

  8. Mean squared error - Wikipedia

    en.wikipedia.org/wiki/Mean_squared_error

    The MSE either assesses the quality of a predictor (i.e., a function mapping arbitrary inputs to a sample of values of some random variable), or of an estimator (i.e., a mathematical function mapping a sample of data to an estimate of a parameter of the population from which the data is sampled).

  9. Empirical likelihood - Wikipedia

    en.wikipedia.org/wiki/Empirical_likelihood

    Given a set of i.i.d. realizations of random variables , then the empirical distribution function is ^ ():= = (<), with the indicator function and the (normalized) weights . ...