Search results
Results from the WOW.Com Content Network
The Suzuki reaction or Suzuki coupling is an organic reaction that uses a palladium complex catalyst to cross-couple a boronic acid to an organohalide. [1] [2] [3] It was first published in 1979 by Akira Suzuki, and he shared the 2010 Nobel Prize in Chemistry with Richard F. Heck and Ei-ichi Negishi for their contribution to the discovery and development of noble metal catalysis in organic ...
The general mechanism for the Suzuki reaction. Pincer complexes have been shown to catalyse Suzuki-Miyaura coupling reactions, a versatile carbon-carbon bond forming reaction. Typical Suzuki coupling employ Pd(0) catalysts with monodentate tertiary phosphine ligands (e.g. Pd(PPh 3) 4). It is a very selective method to couple aryl substituents ...
Cross-coupling reactions are important for the production of pharmaceuticals, [4] examples being montelukast, eletriptan, naproxen, varenicline, and resveratrol. [21] with Suzuki coupling being most widely used. [22] Some polymers and monomers are also prepared in this way. [23]
A 2021 survey of heterogeneous metal catalyzed cross-couplings in the fine chemical industry reported, out of 22 examples, 19 Suzuki or Heck reactions, which included only 2 examples with N-basic heterocycles, and only 4 examples with a singly-ortho-substituted electrophile (representative example in Scheme 1). [1]
Protodeboronation is a well-known undesired side reaction, and frequently associated with metal-catalysed coupling reactions that utilise boronic acids (see Suzuki reaction). [1] For a given boronic acid, the propensity to undergo protodeboronation is highly variable and dependent on various factors, such as the reaction conditions employed and ...
Boronic acids are used extensively in organic chemistry as chemical building blocks and intermediates predominantly in the Suzuki coupling. A key concept in its chemistry is transmetallation of its organic residue to a transition metal. The compound bortezomib with a boronic acid group is a drug used in chemotherapy.
This page was last edited on 28 December 2016, at 22:01 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
It is a standard coupling partner in metal catalyzed coupling reactions. These reactions include Heck reactions, Buchwald-Hartwig coupling, [1] Suzuki couplings, and Ullmann condensations. [2] The corresponding Grignard reagent readily forms. It is a precursor to o-anisaldehyde. [3] [4]