Search results
Results from the WOW.Com Content Network
Element Zero, or "Eezo", is naturally created in dying stars and harvested from supernovas. Is used to generate the mass effect fields of many advanced technologies in the Mass Effect universe. Applying a positive or negative charge to this substance reduces or increases the mass of any objects within the emission field.
The need for a physical description was already inspired by the relative abundances of the chemical elements in the solar system. Those abundances, when plotted on a graph as a function of the atomic number of the element, have a jagged sawtooth shape that varies by factors of tens of millions (see history of nucleosynthesis theory). [4]
The first direct proof that nucleosynthesis occurs in stars was the astronomical observation that interstellar gas has become enriched with heavy elements as time passed. As a result, stars that were born from it late in the galaxy, formed with much higher initial heavy element abundances than those that had formed earlier.
Heavy ion fusion is a fusion energy concept that uses a stream of high-energy ions from a particle accelerator to rapidly heat and compress a small pellet of fusion fuel. It is a subclass of the larger inertial confinement fusion (ICF) approach, replacing the more typical laser systems with an accelerator.
Supernova nucleosynthesis is the nucleosynthesis of chemical elements in supernova explosions.. In sufficiently massive stars, the nucleosynthesis by fusion of lighter elements into heavier ones occurs during sequential hydrostatic burning processes called helium burning, carbon burning, oxygen burning, and silicon burning, in which the byproducts of one nuclear fuel become, after ...
The longest half-lives of the radioisotopes of these elements generated by nuclear fission are 373.59 days for ruthenium and 45 days for rhodium [clarification needed]. This makes the extraction of the non-radioactive isotope from spent nuclear fuel possible after a few years of storage, although the extract must be checked for radioactivity ...
Abundance peaks for the r-process occur near mass numbers A = 82 (elements Se, Br, and Kr), A = 130 (elements Te, I, and Xe) and A = 196 (elements Os, Ir, and Pt). The r-process entails a succession of rapid neutron captures (hence the name) by one or more heavy seed nuclei, typically beginning with nuclei in the abundance peak centered on 56 Fe.
Induced gamma emission belongs to a class in which only photons were involved in creating and destroying states of nuclear excitation. Fission reactions – a very heavy nucleus, after absorbing additional light particles (usually neutrons), splits into two or sometimes three pieces. This is an induced nuclear reaction.