Search results
Results from the WOW.Com Content Network
In thermodynamics, a closed system is important for solving complicated thermodynamic problems. It allows the elimination of some external factors that could alter the results of the experiment or problem thus simplifying it. A closed system can also be used in situations where thermodynamic equilibrium is required to simplify the situation.
Properties of isolated, closed, and open thermodynamic systems in exchanging energy and matter. A thermodynamic system is a body of matter and/or radiation separate from its surroundings that can be studied using the laws of thermodynamics. Thermodynamic systems can be passive and active according to internal processes.
Properties of Isolated, closed, and open systems in exchanging energy and matter. In physical science, an isolated system is either of the following: a physical system so far removed from other systems that it does not interact with them. a thermodynamic system enclosed by rigid immovable walls through which neither mass nor energy can pass.
An isochoric process is exemplified by the heating or the cooling of the contents of a sealed, inelastic container: The thermodynamic process is the addition or removal of heat; the isolation of the contents of the container establishes the closed system; and the inability of the container to deform imposes the constant-volume condition.
For example, when a machine (not a part of the system) lifts a system upwards, some energy is transferred from the machine to the system. The system's energy increases as work is done on the system and in this particular case, the energy increase of the system is manifested as an increase in the system's gravitational potential energy. Work ...
The terms closed system and open system have long been defined in the widely (and long before any sort of amplifier was invented) established subject of thermodynamics, in terms that have nothing to do with the concepts of feedback and feedforward. The terms 'feedforward' and 'feedback' arose first in the 1920s in the theory of amplifier design ...
In thermodynamics, an adiabatic wall between two thermodynamic systems does not allow heat or chemical substances to pass across it, in other words there is no heat transfer or mass transfer. In theoretical investigations, it is sometimes assumed that one of the two systems is the surroundings of the other.
An example of a cycle of idealized thermodynamic processes which make up the Stirling cycle. A quasi-static thermodynamic process can be visualized by graphically plotting the path of idealized changes to the system's state variables. In the example, a cycle consisting of four quasi-static processes is shown.