Search results
Results from the WOW.Com Content Network
An antiaromatic compound may demonstrate its antiaromaticity both kinetically and thermodynamically. As will be discussed later, antiaromatic compounds experience exceptionally high chemical reactivity (being highly reactive is not “indicative” of an antiaromatic compound, it merely suggests that the compound could be antiaromatic).
It is an unstable, non-planar compound which is non-aromatic. [1] [2] The dianion, however, satisfies Hückel's rule, is thermally stable, and is planar. [3] See also
Annulenes may be aromatic (benzene, [6]annulene and [18]annulene), non-aromatic ([8] and [10]annulene), or anti-aromatic (cyclobutadiene, [4]annulene). Cyclobutadiene is the only annulene with considerable antiaromaticity, since planarity is unavoidable.
Acyclic aliphatic/non-aromatic compound Cyclic aliphatic/non-aromatic compound (cyclobutane)In organic chemistry, hydrocarbons (compounds composed solely of carbon and hydrogen) are divided into two classes: aromatic compounds and aliphatic compounds (/ ˌ æ l ɪ ˈ f æ t ɪ k /; G. aleiphar, fat, oil).
Cyclic compounds may or may not exhibit aromaticity; benzene is an example of an aromatic cyclic compound, while cyclohexane is non-aromatic. In organic chemistry, the term aromaticity is used to describe a cyclic (ring-shaped), planar (flat) molecule that exhibits unusual stability as compared to other geometric or connective arrangements of ...
Pentalene is a polycyclic hydrocarbon composed of two fused cyclopentadiene rings. [2] It has chemical formula C 8 H 6.It is antiaromatic, because it has 4n π electrons where n is any integer.
Aromatization is a chemical reaction in which an aromatic system is formed from a single nonaromatic precursor. Typically aromatization is achieved by dehydrogenation of existing cyclic compounds, illustrated by the conversion of cyclohexane into benzene. Aromatization includes the formation of heterocyclic systems. [1]
Heteroarenes are aromatic compounds, where at least one methine or vinylene (-C= or -CH=CH-) group is replaced by a heteroatom: oxygen, nitrogen, or sulfur. [3] Examples of non-benzene compounds with aromatic properties are furan, a heterocyclic compound with a five-membered ring that includes a single oxygen atom, and pyridine, a heterocyclic compound with a six-membered ring containing one ...