enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rankine theory - Wikipedia

    en.wikipedia.org/wiki/Rankine_theory

    The equations for active and passive lateral earth pressure coefficients are given below. Note that φ' is the angle of shearing resistance of the soil and the backfill is inclined at angle β to the horizontal.

  3. Shear strength (soil) - Wikipedia

    en.wikipedia.org/wiki/Shear_strength_(soil)

    The shear strength of soil depends on the effective stress, the drainage conditions, the density of the particles, the rate of strain, and the direction of the strain. For undrained, constant volume shearing, the Tresca theory may be used to predict the shear strength, but for drained conditions, the Mohr–Coulomb theory may be used.

  4. Lateral earth pressure - Wikipedia

    en.wikipedia.org/wiki/Lateral_earth_pressure

    An example of lateral earth pressure overturning a retaining wall. The lateral earth pressure is the pressure that soil exerts in the horizontal direction. It is important because it affects the consolidation behavior and strength of the soil and because it is considered in the design of geotechnical engineering structures such as retaining walls, basements, tunnels, deep foundations and ...

  5. Soil mechanics - Wikipedia

    en.wikipedia.org/wiki/Soil_mechanics

    The shear strength of soil is primarily due to interparticle friction and therefore, the shear resistance on a plane is approximately proportional to the effective normal stress on that plane. [3] The angle of internal friction is thus closely related to the maximum stable slope angle, often called the angle of repose.

  6. Mohr's circle - Wikipedia

    en.wikipedia.org/wiki/Mohr's_circle

    We can choose to either use the double angle approach (Figure 8) or the Pole approach (Figure 9) to find the orientation of the principal normal stresses and principal shear stresses. Using the double angle approach we measure the angles ∠BOC and ∠BOE in the Mohr Circle (Figure 8) to find double the angle the major principal stress and the ...

  7. Mohr–Coulomb theory - Wikipedia

    en.wikipedia.org/wiki/Mohr–Coulomb_theory

    Most of the classical engineering materials follow this rule in at least a portion of their shear failure envelope. Generally the theory applies to materials for which the compressive strength far exceeds the tensile strength. [1] In geotechnical engineering it is used to define shear strength of soils and rocks at different effective stresses.

  8. Soil sloughing - Wikipedia

    en.wikipedia.org/wiki/Soil_sloughing

    According to the Mohr-Coulomb equation, the cohesion of a soil is defined as the shear strength at zero normal pressure on the surface of failure. [4] The shear force is a function of cohesion, normal stress on rupture surface, and angle of internal friction. Shear force is significantly impacted by drainage conditions. [5]

  9. Cohesion (geology) - Wikipedia

    en.wikipedia.org/wiki/Cohesion_(geology)

    Cohesion is the component of shear strength of a rock or soil that is independent of interparticle friction. In soils, true cohesion is caused by following: Electrostatic forces in stiff overconsolidated clays (which may be lost through weathering) Cementing by Fe 2 O 3, Ca CO 3, Na Cl, etc. There can also be apparent cohesion. This is caused by: