enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Shear strength (soil) - Wikipedia

    en.wikipedia.org/wiki/Shear_strength_(soil)

    The shear strength of soil depends on the effective stress, the drainage conditions, the density of the particles, the rate of strain, and the direction of the strain. For undrained, constant volume shearing, the Tresca theory may be used to predict the shear strength, but for drained conditions, the Mohr–Coulomb theory may be used.

  3. Soil mechanics - Wikipedia

    en.wikipedia.org/wiki/Soil_mechanics

    Different criteria can be used to define the "shear strength" and the "yield point" for a soil element from a stress–strain curve. One may define the peak shear strength as the peak of a stress–strain curve, or the shear strength at critical state as the value after large strains when the shear resistance levels off.

  4. Mohr–Coulomb theory - Wikipedia

    en.wikipedia.org/wiki/Mohr–Coulomb_theory

    Most of the classical engineering materials follow this rule in at least a portion of their shear failure envelope. Generally the theory applies to materials for which the compressive strength far exceeds the tensile strength. [1] In geotechnical engineering it is used to define shear strength of soils and rocks at different effective stresses.

  5. Rankine theory - Wikipedia

    en.wikipedia.org/wiki/Rankine_theory

    This theory, which considers the soil to be in a state of plastic equilibrium, makes the assumptions that the soil is homogeneous, isotropic and has internal friction. The pressure exerted by soil against the wall is referred to as active pressure. The resistance offered by the soil to an object pushing against it is referred to as "passive ...

  6. Mohr's circle - Wikipedia

    en.wikipedia.org/wiki/Mohr's_circle

    We can choose to either use the double angle approach (Figure 8) or the Pole approach (Figure 9) to find the orientation of the principal normal stresses and principal shear stresses. Using the double angle approach we measure the angles ∠BOC and ∠BOE in the Mohr Circle (Figure 8) to find double the angle the major principal stress and the ...

  7. Cohesion (geology) - Wikipedia

    en.wikipedia.org/wiki/Cohesion_(geology)

    Cohesion is the component of shear strength of a rock or soil that is independent of interparticle friction. In soils, true cohesion is caused by following: Electrostatic forces in stiff overconsolidated clays (which may be lost through weathering) Cementing by Fe 2 O 3, Ca CO 3, Na Cl, etc. There can also be apparent cohesion. This is caused by:

  8. Dilatancy (granular material) - Wikipedia

    en.wikipedia.org/wiki/Dilatancy_(granular_material)

    In soil mechanics, dilatancy or shear dilatancy [1] is the volume change observed in granular materials when they are subjected to shear deformations. [ 2 ] [ 3 ] This effect was first described scientifically by Osborne Reynolds in 1885/1886 [ 4 ] [ 5 ] and is also known as Reynolds dilatancy .

  9. Critical state soil mechanics - Wikipedia

    en.wikipedia.org/wiki/Critical_state_soil_mechanics

    It's the point at which the soil cannot sustain any additional load without undergoing continuous deformation, in a manner similar to the behaviour of fluids. Certain properties of the soil, like porosity, shear strength, and volume, reach characteristic values. These properties are intrinsic to the type of soil and its initial conditions.