Search results
Results from the WOW.Com Content Network
conversion factor/N⋅m combinations Industrial: SI: Newton-metre: Nm N⋅m 1 Nm lbft; Nm lbfft; Non-SI metric: kilogram-metre: kgm kg·m 9.80665 Imperial & US customary: pound-foot: lbft lb⋅ft Pound-inch (lb.in) is also available 1.3558 Scientific: SI: newton metre: Nm N⋅m 1 Nm lbft; Nm lbfft; Non-SI metric: kilogram-force metre: kgf.m kgf ...
Similarly, an inch-pound (or pound-inch) is the torque of one pound of force applied to one inch of distance from the pivot, and is equal to 1 ⁄ 12 lbf⋅ft (0.1129848 N⋅m). It is commonly used on torque wrenches and torque screwdrivers for setting specific fastener tension.
In the US, torque is most commonly referred to as the foot-pound (denoted as either lb-ft or ft-lb) and the inch-pound (denoted as in-lb). [ 17 ] [ 18 ] Practitioners depend on context and the hyphen in the abbreviation to know that these refer to torque and not to energy or moment of mass (as the symbolism ft-lb would properly imply).
The foot-pound force (symbol: ft⋅lbf, [1] ft⋅lb f, [2] or ft⋅lb [3]) is a unit of work or energy in the engineering and gravitational systems in United States customary and imperial units of measure. It is the energy transferred upon applying a force of one pound-force (lbf) through a linear displacement of one foot.
Avoirdupois is a system of mass based on a pound of 16 ounces, while Troy weight is the system of mass where 12 troy ounces equals one troy pound. The symbol g 0 is used to denote standard gravity in order to avoid confusion with the (upright) g symbol for gram.
In engineering and physics, g c is a unit conversion factor used to convert mass to force or vice versa. [1] It is defined as = In unit systems where force is a derived unit, like in SI units, g c is equal to 1.
Since a pound of force (pound force) accelerates a pound of mass at 32.174 049 ft/s 2 (9.80665 m/s 2; the acceleration of gravity, g), we can scale down the unit of force to compensate, giving us one that accelerates 1 pound mass at 1 ft/s 2 rather than at 32.174 049 ft/s 2; and that is the poundal, which is approximately 1 ⁄ 32 pound force.
One slug is a mass equal to 32.17405 lb (14.59390 kg) based on standard gravity, the international foot, and the avoirdupois pound. [3] In other words, at the Earth's surface (in standard gravity), an object with a mass of 1 slug weighs approximately 32.17405 lbf or 143.1173 N. [4] [5]