Search results
Results from the WOW.Com Content Network
Itself can be extended into the Expectation conditional maximization either (ECME) algorithm. [35] This idea is further extended in generalized expectation maximization (GEM) algorithm, in which is sought only an increase in the objective function F for both the E step and M step as described in the As a maximization–maximization procedure ...
Because the minimization over all possible sets of cluster centers is prohibitively complex, the distortion is computed in practice by generating a set of cluster centers using a standard clustering algorithm and computing the distortion using the result. The pseudo-code for the jump method with an input set of p-dimensional data points X is:
The EM algorithm consists of two steps: the E-step and the M-step. Firstly, the model parameters and the () can be randomly initialized. In the E-step, the algorithm tries to guess the value of () based on the parameters, while in the M-step, the algorithm updates the value of the model parameters based on the guess of () of the E-step.
Divisive Clustering: Top-down approach. Large clusters are split into smaller clusters. [3] Density-based Clustering: A structure is determined by the density of data points. [4] DBSCAN; Distribution-based Clustering: Clusters are formed based on mathematical methods from data. [1] Expectation-maximization algorithm; Collocation; Stemming Algorithm
Such a model can be trained with the expectation-maximization algorithm on an unlabeled set of hand-written digits, and will effectively cluster the images according to the digit being written. The same model could then be used to recognize the digit of another image simply by holding the parameters constant, computing the probability of the ...
The proposed algorithm uses Lloyd-style iteration which alternates between an expectation (E) and maximization (M) step, making this an expectation–maximization algorithm. In the E step, all objects are assigned to their nearest median. In the M step, the medians are recomputed by using the median in each single dimension.
The slow "standard algorithm" for k-means clustering, and its associated expectation–maximization algorithm, is a special case of a Gaussian mixture model, specifically, the limiting case when fixing all covariances to be diagonal, equal and have infinitesimal small variance.
This training algorithm is an instance of the more general expectation–maximization algorithm (EM): the prediction step inside the loop is the E-step of EM, while the re-training of naive Bayes is the M-step.