enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Load factor (aeronautics) - Wikipedia

    en.wikipedia.org/wiki/Load_factor_(aeronautics)

    The load factor, and in particular its sign, depends not only on the forces acting on the aircraft, but also on the orientation of its vertical axis. During straight and level flight, the load factor is +1 if the aircraft is flown "the right way up", [2]: 90 whereas it becomes −1 if the aircraft is flown "upside-down" (inverted). In both ...

  3. Aerodynamic force - Wikipedia

    en.wikipedia.org/wiki/Aerodynamic_force

    The aerodynamic force is the resultant vector from adding the lift vector, perpendicular to the flow direction, and the drag vector, parallel to the flow direction. Forces on an aerofoil . In fluid mechanics , an aerodynamic force is a force exerted on a body by the air (or other gas ) in which the body is immersed, and is due to the relative ...

  4. Drag equation - Wikipedia

    en.wikipedia.org/wiki/Drag_equation

    The drag force can also be specified as where P D is the pressure exerted by the fluid on area A.Here the pressure P D is referred to as dynamic pressure due to the kinetic energy of the fluid experiencing relative flow velocity u.

  5. Drag curve - Wikipedia

    en.wikipedia.org/wiki/Drag_curve

    The lift and the drag forces, L and D, are scaled by the same factor to get C L and C D, so L/D = C L /C D. L and D are at right angles, with D parallel to the free stream velocity (the relative velocity of the surrounding distant air), so the resultant force R lies at the same angle to D as the line from the origin of the graph to the ...

  6. Morison equation - Wikipedia

    en.wikipedia.org/wiki/Morison_equation

    The Morison equation is the sum of two force components: an inertia force in phase with the local flow acceleration and a drag force proportional to the (signed) square of the instantaneous flow velocity. The inertia force is of the functional form as found in potential flow theory, while the drag force has the form as found for a body placed ...

  7. Drag coefficient - Wikipedia

    en.wikipedia.org/wiki/Drag_coefficient

    Drag coefficients in fluids with Reynolds number approximately 10 4 [1] [2] Shapes are depicted with the same projected frontal area. In fluid dynamics, the drag coefficient (commonly denoted as: , or ) is a dimensionless quantity that is used to quantify the drag or resistance of an object in a fluid environment, such as air or water.

  8. Aircraft flight dynamics - Wikipedia

    en.wikipedia.org/wiki/Aircraft_flight_dynamics

    In studying the trajectory, it is the direction of the velocity vector, rather than that of the body, which is of interest. The direction of the velocity vector when projected on to the horizontal will be called the track, denoted . The body orientation is called the heading, denoted (psi).

  9. Free body diagram - Wikipedia

    en.wikipedia.org/wiki/Free_body_diagram

    Stresses and strains are of no interest but rotational effects are. A force arrow should lie along the line of force, but where along the line is irrelevant. A force on an extended rigid body is a sliding vector. non-rigid extended. The point of application of a force becomes crucial and has to be indicated on the diagram.