enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Load factor (aeronautics) - Wikipedia

    en.wikipedia.org/wiki/Load_factor_(aeronautics)

    Since the load factor is the ratio of two forces, it is dimensionless. However, its units are traditionally referred to as g, because of the relation between load factor and apparent acceleration of gravity felt on board the aircraft. A load factor of one, or 1 g, represents conditions in straight and level flight, where the lift is equal to ...

  3. Aircraft flight dynamics - Wikipedia

    en.wikipedia.org/wiki/Aircraft_flight_dynamics

    The yaw plane translational equation, as in the pitch plane, equates the centripetal acceleration to the side force. = where (beta) is the sideslip angle, Y the side force and r the yaw rate. The moment equations are a bit trickier.

  4. Blade element theory - Wikipedia

    en.wikipedia.org/wiki/Blade_element_theory

    Consider the element at radius r, shown in Fig. 1, which has the infinitesimal length dr and the width b. The motion of the element in an aircraft propeller in flight is along a helical path determined by the forward velocity V of the aircraft and the tangential velocity 2πrn of the element in the plane of the propeller disc, where n represents the revolutions per unit time.

  5. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    This velocity is the asymptotic limiting value of the acceleration process, because the effective forces on the body balance each other more and more closely as the terminal velocity is approached. In this example, a speed of 50 % of terminal velocity is reached after only about 3 seconds, while it takes 8 seconds to reach 90 %, 15 seconds to ...

  6. Free body diagram - Wikipedia

    en.wikipedia.org/wiki/Free_body_diagram

    Stresses and strains are of no interest but rotational effects are. A force arrow should lie along the line of force, but where along the line is irrelevant. A force on an extended rigid body is a sliding vector. non-rigid extended. The point of application of a force becomes crucial and has to be indicated on the diagram.

  7. Morison equation - Wikipedia

    en.wikipedia.org/wiki/Morison_equation

    The Morison equation is the sum of two force components: an inertia force in phase with the local flow acceleration and a drag force proportional to the (signed) square of the instantaneous flow velocity. The inertia force is of the functional form as found in potential flow theory, while the drag force has the form as found for a body placed ...

  8. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.

  9. Motion graphs and derivatives - Wikipedia

    en.wikipedia.org/wiki/Motion_graphs_and_derivatives

    Since the velocity of the object is the derivative of the position graph, the area under the line in the velocity vs. time graph is the displacement of the object. (Velocity is on the y-axis and time on the x-axis. Multiplying the velocity by the time, the time cancels out, and only displacement remains.)