Search results
Results from the WOW.Com Content Network
An orthographic projection of the 3D p–v–T graph showing pressure and temperature as the vertical and horizontal axes collapses the 3D plot into the standard 2D pressure–temperature diagram. When this is done, the solid–vapor, solid–liquid, and liquid–vapor surfaces collapse into three corresponding curved lines meeting at the ...
The commonly known phases solid, liquid and vapor are separated by phase boundaries, i.e. pressure–temperature combinations where two phases can coexist. At the triple point, all three phases can coexist. However, the liquid–vapor boundary terminates in an endpoint at some critical temperature T c and critical pressure p c. This is the ...
A typical phase diagram.The solid green line applies to most substances; the dashed green line gives the anomalous behavior of water. In thermodynamics, the triple point of a substance is the temperature and pressure at which the three phases (gas, liquid, and solid) of that substance coexist in thermodynamic equilibrium. [1]
The main feature of thermodynamic diagrams is the equivalence between the area in the diagram and energy. When air changes pressure and temperature during a process and prescribes a closed curve within the diagram the area enclosed by this curve is proportional to the energy which has been gained or released by the air.
Iron-carbon phase diagram, showing the conditions necessary to form different phases. Distinct phases may be described as different states of matter such as gas, liquid, solid, plasma or Bose–Einstein condensate. Useful mesophases between solid and liquid form other states of matter. Distinct phases may also exist within a given state of matter.
A saturation dome uses the projection of a P–v–T diagram (pressure, specific volume, and temperature) onto the P–v plane. The points that create the left-hand side of the dome represent the saturated liquid states, while the points on the right-hand side represent the saturated vapor states (commonly referred to as the “dry” region).
Phase transitions commonly refer to when a substance transforms between one of the four states of matter to another. At the phase transition point for a substance, for instance the boiling point, the two phases involved - liquid and vapor, have identical free energies and therefore are equally likely to exist.
The upper curve is the line of liquidus, and the lower curve is the line of solidus. In chemistry , materials science , and physics , the liquidus temperature specifies the temperature above which a material is completely liquid, [ 2 ] and the maximum temperature at which crystals can co-exist with the melt in thermodynamic equilibrium .