enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Spin (physics) - Wikipedia

    en.wikipedia.org/wiki/Spin_(physics)

    Spin is an intrinsic form of angular momentum carried by elementary particles, and thus by composite particles such as hadrons, atomic nuclei, and atoms. [1] [2]: 183–184 Spin is quantized, and accurate models for the interaction with spin require relativistic quantum mechanics or quantum field theory.

  3. Spin quantum number - Wikipedia

    en.wikipedia.org/wiki/Spin_quantum_number

    In physics and chemistry, the spin quantum number is a quantum number (designated s) that describes the intrinsic angular momentum (or spin angular momentum, or simply spin) of an electron or other particle. It has the same value for all particles of the same type, such as s = ⁠ 1 / 2 ⁠ for all electrons.

  4. Spin angular momentum of light - Wikipedia

    en.wikipedia.org/wiki/Spin_angular_momentum_of_light

    The general expression for the spin angular momentum is [1] =, where is the speed of light in free space and is the conjugate canonical momentum of the vector potential.The general expression for the orbital angular momentum of light is =, where = {,,,} denotes four indices of the spacetime and Einstein's summation convention has been applied.

  5. Angular momentum - Wikipedia

    en.wikipedia.org/wiki/Angular_momentum

    However, in quantum physics, there is another type of angular momentum, called spin angular momentum, represented by the spin operator S. Spin is often depicted as a particle literally spinning around an axis, but this is a misleading and inaccurate picture: spin is an intrinsic property of a particle, unrelated to any sort of motion in space ...

  6. Quantum number - Wikipedia

    en.wikipedia.org/wiki/Quantum_number

    This would ultimately become the quantized values of the projection of spin, an intrinsic angular momentum quantum of the electron. In 1927 Ronald Fraser demonstrated that the quantization in the Stern-Gerlach experiment was due to the magnetic moment associated with the electron spin rather than its orbital angular momentum. [7]

  7. Helicity (particle physics) - Wikipedia

    en.wikipedia.org/wiki/Helicity_(particle_physics)

    The angular momentum J is the sum of an orbital angular momentum L and a spin S. The relationship between orbital angular momentum L, the position operator r and the linear momentum (orbit part) p is = so L's component in the direction of p is zero. Thus, helicity is just the projection of the spin onto the direction of linear momentum.

  8. Orbital motion (quantum) - Wikipedia

    en.wikipedia.org/wiki/Orbital_motion_(quantum)

    The total angular momentum of a particle is the sum of both its orbital angular momentum and spin angular momentum. [3] A particle's spin is generally represented in terms of spin operators. It turns out for particles that make up ordinary matter (protons, neutrons, electrons, quarks, etc.) particles are of spin 1/2. [4] Only two energy levels ...

  9. Electron magnetic moment - Wikipedia

    en.wikipedia.org/wiki/Electron_magnetic_moment

    Note that μ is a negative constant multiplied by the spin, so the magnetic moment is antiparallel to the spin angular momentum. The spin g-factor g s = 2 comes from the Dirac equation, a fundamental equation connecting the electron's spin with its electromagnetic properties. Reduction of the Dirac equation for an electron in a magnetic field ...