enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. e (mathematical constant) - Wikipedia

    en.wikipedia.org/wiki/E_(mathematical_constant)

    The number e is a mathematical constant approximately equal to 2.71828 that is the base of the natural logarithm and exponential function.It is sometimes called Euler's number, after the Swiss mathematician Leonhard Euler, though this can invite confusion with Euler numbers, or with Euler's constant, a different constant typically denoted .

  3. Euler's identity - Wikipedia

    en.wikipedia.org/wiki/Euler's_identity

    The number e (e = 2.71828...), also known as Euler's number, which occurs widely in mathematical analysis; The number i, the imaginary unit such that = The equation is often given in the form of an expression set equal to zero, which is common practice in several areas of mathematics.

  4. Natural logarithm - Wikipedia

    en.wikipedia.org/wiki/Natural_logarithm

    The natural logarithm of a number is its logarithm to the base of the mathematical constant e, which is an irrational and transcendental number approximately equal to 2.718 281 828 459. [1] The natural logarithm of x is generally written as ln x , log e x , or sometimes, if the base e is implicit, simply log x .

  5. Mathematical constant - Wikipedia

    en.wikipedia.org/wiki/Mathematical_constant

    The constant e also has applications to probability theory, where it arises in a way not obviously related to exponential growth. As an example, suppose that a slot machine with a one in n probability of winning is played n times, then for large n (e.g., one million), the probability that nothing will be won will tend to 1/e as n tends to infinity.

  6. Transcendental number - Wikipedia

    en.wikipedia.org/wiki/Transcendental_number

    It is unknown whether e + π, for example, is transcendental, though at least one of e + π and eπ must be transcendental. More generally, for any two transcendental numbers a and b, at least one of a + b and ab must be transcendental. To see this, consider the polynomial (x − a)(x − b) = x 2 − (a + b) x + a b .

  7. Proof that e is irrational - Wikipedia

    en.wikipedia.org/wiki/Proof_that_e_is_irrational

    The idea is to then analyze the scaled-up difference (here denoted x) between the series representation of e and its strictly smaller b-th partial sum, which approximates the limiting value e. By choosing the scale factor to be the factorial of b , the fraction ⁠ a / b ⁠ and the b -th partial sum are turned into integers , hence x must be a ...

  8. Euler's constant - Wikipedia

    en.wikipedia.org/wiki/Euler's_constant

    The area of the blue region converges to Euler's constant. Euler's constant (sometimes called the Euler–Mascheroni constant) is a mathematical constant, usually denoted by the lowercase Greek letter gamma (γ), defined as the limiting difference between the harmonic series and the natural logarithm, denoted here by log:

  9. List of mathematical constants - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_constants

    For a lattice L in Euclidean space R n with unit covolume, i.e. vol(R n /L) = 1, let λ 1 (L) denote the least length of a nonzero element of L. Then √γ n n is the maximum of λ 1 (L) over all such lattices L. 1822 to 1901 Hafner–Sarnak–McCurley constant [118] ()