enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mixture model - Wikipedia

    en.wikipedia.org/wiki/Mixture_model

    A typical finite-dimensional mixture model is a hierarchical model consisting of the following components: . N random variables that are observed, each distributed according to a mixture of K components, with the components belonging to the same parametric family of distributions (e.g., all normal, all Zipfian, etc.) but with different parameters

  3. EM algorithm and GMM model - Wikipedia

    en.wikipedia.org/wiki/EM_Algorithm_And_GMM_Model

    The EM algorithm consists of two steps: the E-step and the M-step. Firstly, the model parameters and the () can be randomly initialized. In the E-step, the algorithm tries to guess the value of () based on the parameters, while in the M-step, the algorithm updates the value of the model parameters based on the guess of () of the E-step.

  4. Mixture of experts - Wikipedia

    en.wikipedia.org/wiki/Mixture_of_experts

    The mixture of experts, being similar to the gaussian mixture model, can also be trained by the expectation-maximization algorithm, just like gaussian mixture models. Specifically, during the expectation step, the "burden" for explaining each data point is assigned over the experts, and during the maximization step, the experts are trained to ...

  5. Mixed model - Wikipedia

    en.wikipedia.org/wiki/Mixed_model

    A mixed model, mixed-effects model or mixed error-component model is a statistical model containing both fixed effects and random effects. [ 1 ] [ 2 ] These models are useful in a wide variety of disciplines in the physical, biological and social sciences.

  6. Product of experts - Wikipedia

    en.wikipedia.org/wiki/Product_of_Experts

    Product of experts (PoE) is a machine learning technique. It models a probability distribution by combining the output from several simpler distributions. It was proposed by Geoffrey Hinton in 1999, [1] along with an algorithm for training the parameters of such a system.

  7. Machine learning - Wikipedia

    en.wikipedia.org/wiki/Machine_learning

    Machine learning models are often vulnerable to manipulation and/or evasion via adversarial machine learning. [131] Researchers have demonstrated how backdoors can be placed undetectably into classifying (e.g., for categories "spam" and well-visible "not spam" of posts) machine learning models that are often developed and/or trained by third ...

  8. Latent variable model - Wikipedia

    en.wikipedia.org/wiki/Latent_variable_model

    The Rasch model represents the simplest form of item response theory. Mixture models are central to latent profile analysis.. In factor analysis and latent trait analysis [note 1] the latent variables are treated as continuous normally distributed variables, and in latent profile analysis and latent class analysis as from a multinomial distribution. [7]

  9. Dirichlet distribution - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_distribution

    Dirichlet distributions are most commonly used as the prior distribution of categorical variables or multinomial variables in Bayesian mixture models and other hierarchical Bayesian models. (In many fields, such as in natural language processing , categorical variables are often imprecisely called "multinomial variables".