Search results
Results from the WOW.Com Content Network
The hpc lattice (left) and the ccf lattice (right) The principles involved can be understood by considering the most efficient way of packing together equal-sized spheres and stacking close-packed atomic planes in three dimensions. For example, if plane A lies beneath plane B, there are two possible ways of placing an additional atom on top of ...
A lattice is an abstract structure studied in the mathematical subdisciplines of order theory and abstract algebra.It consists of a partially ordered set in which every pair of elements has a unique supremum (also called a least upper bound or join) and a unique infimum (also called a greatest lower bound or meet).
In mathematical physics, a lattice model is a mathematical model of a physical system that is defined on a lattice, as opposed to a continuum, such as the continuum of space or spacetime. Lattice models originally occurred in the context of condensed matter physics, where the atoms of a crystal automatically form a lattice.
All primitive unit cells with different shapes for a given crystal have the same volume by definition; For a given crystal, if n is the density of lattice points in a lattice ensuring the minimum amount of basis constituents and v is the volume of a chosen primitive cell, then nv = 1 resulting in v = 1/n, so every primitive cell has the same ...
Lattice models with nearest-neighbor interactions have been used extensively to model a wide variety of systems and phenomena, including the lattice gas, binary liquid solutions, order-disorder phase transitions, ferromagnetism, and antiferromagnetism. [1]
A totally ordered set is a distributive lattice. 21. A metric lattice is modular. [6] 22. A modular lattice is semi-modular. [7] 23. A projective lattice is modular. [8] 24. A projective lattice is geometric. (def) 25. A geometric lattice is semi-modular. [9] 26. A semi-modular lattice is atomic. [10] [disputed – discuss] 27. An atomic ...
The crystal structure can be described as a Bravais lattice with a group of atoms, called the basis, placed at every lattice point; that is, [crystal structure] = [lattice] [basis]. If the lattice is infinite and completely regular, the system is a perfect crystal .
In geometry, close-packing of equal spheres is a dense arrangement of congruent spheres in an infinite, regular arrangement (or lattice). Carl Friedrich Gauss proved that the highest average density – that is, the greatest fraction of space occupied by spheres – that can be achieved by a lattice packing is