enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Methods of computing square roots - Wikipedia

    en.wikipedia.org/wiki/Methods_of_computing...

    A method analogous to piece-wise linear approximation but using only arithmetic instead of algebraic equations, uses the multiplication tables in reverse: the square root of a number between 1 and 100 is between 1 and 10, so if we know 25 is a perfect square (5 × 5), and 36 is a perfect square (6 × 6), then the square root of a number greater than or equal to 25 but less than 36, begins with ...

  3. Square root - Wikipedia

    en.wikipedia.org/wiki/Square_root

    Notation for the (principal) square root of x. For example, √ 25 = 5, since 25 = 5 ⋅ 5, or 5 2 (5 squared). In mathematics, a square root of a number x is a number y such that =; in other words, a number y whose square (the result of multiplying the number by itself, or ) is x. [1]

  4. Newton's method - Wikipedia

    en.wikipedia.org/wiki/Newton's_method

    Newton's method is one of many known methods of computing square roots. Given a positive number a, the problem of finding a number x such that x 2 = a is equivalent to finding a root of the function f(x) = x 2 − a. The Newton iteration defined by this function is given by

  5. nth root - Wikipedia

    en.wikipedia.org/wiki/Nth_root

    A square root of a number x is a number r which, when squared, becomes x: =. Every positive real number has two square roots, one positive and one negative. For example, the two square roots of 25 are 5 and −5. The positive square root is also known as the principal square root, and is denoted with a radical sign:

  6. Integer square root - Wikipedia

    en.wikipedia.org/wiki/Integer_square_root

    The traditional pen-and-paper algorithm for computing the square root is based on working from higher digit places to lower, and as each new digit pick the largest that will still yield a square . If stopping after the one's place, the result computed will be the integer square root.

  7. Kunerth's algorithm - Wikipedia

    en.wikipedia.org/wiki/Kunerth's_algorithm

    The modular square root of can be taken this way. Having solved the associated quadratic equation we now have the variables w and set v = r (if C in the quadratic is a natural square). Solve for variables α {\displaystyle \alpha } and β {\displaystyle \beta } the following equation:

  8. Nested radical - Wikipedia

    en.wikipedia.org/wiki/Nested_radical

    In the case of two nested square roots, the following theorem completely solves the problem of denesting. [2]If a and c are rational numbers and c is not the square of a rational number, there are two rational numbers x and y such that + = if and only if is the square of a rational number d.

  9. Mental calculation - Wikipedia

    en.wikipedia.org/wiki/Mental_calculation

    This process can be extended to find cube roots that are 3 digits long, by using arithmetic modulo 11. [3] These types of tricks can be used in any root where the order of the root is coprime with 10; thus it fails to work in square root, since the power, 2, divides into 10. 3 does not divide 10, thus cube roots work.