Search results
Results from the WOW.Com Content Network
Ordinary least squares regression of Okun's law.Since the regression line does not miss any of the points by very much, the R 2 of the regression is relatively high.. In statistics, the coefficient of determination, denoted R 2 or r 2 and pronounced "R squared", is the proportion of the variation in the dependent variable that is predictable from the independent variable(s).
A probabilistic neural network (PNN) [1] is a feedforward neural network, which is widely used in classification and pattern recognition problems.In the PNN algorithm, the parent probability distribution function (PDF) of each class is approximated by a Parzen window and a non-parametric function.
In machine learning, Platt scaling or Platt calibration is a way of transforming the outputs of a classification model into a probability distribution over classes.The method was invented by John Platt in the context of support vector machines, [1] replacing an earlier method by Vapnik, but can be applied to other classification models. [2]
An example calibration plot. Calibration can be assessed using a calibration plot (also called a reliability diagram). [3] [5] A calibration plot shows the proportion of items in each class for bands of predicted probability or score (such as a distorted probability distribution or the "signed distance to the hyperplane" in a support vector ...
Thus an approximate p-value can be obtained from a normal probability table. For example, if z = 2.2 is observed and a two-sided p-value is desired to test the null hypothesis that =, the p-value is 2 Φ(−2.2) = 0.028, where Φ is the standard normal cumulative distribution function.
A simple example of a statistical manifold, taken from physics, would be the canonical ensemble: it is a one-dimensional manifold, with the temperature T serving as the coordinate on the manifold. For any fixed temperature T, one has a probability space: so, for a gas of atoms, it would be the probability distribution of the velocities of the ...
gives a probability that a statistic is between 0 (mean) and Z. Example: Prob(0 ≤ Z ≤ 0.69) = 0.2549. Cumulative gives a probability that a statistic is less than Z. This equates to the area of the distribution below Z. Example: Prob(Z ≤ 0.69) = 0.7549. Complementary cumulative gives a probability that a statistic is greater than Z.
The example here is of the Student's t-distribution, which is normally provided in R only in its standard form, with a single degrees of freedom parameter df. The versions below with _ls appended show how to generalize this to a generalized Student's t-distribution with an arbitrary location parameter m and scale parameter s .