enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Acid–base titration - Wikipedia

    en.wikipedia.org/wiki/Acid–base_titration

    Note that when an acid neutralizes a base, the pH may or may not be neutral (pH = 7). The pH depends on the strengths of the acid and base. In the case of a weak acid and strong base titration, the pH is greater than 7 at the equivalence point. Thus pH can be calculated using the following formula: [1]

  3. Titration - Wikipedia

    en.wikipedia.org/wiki/Titration

    Titration curves corresponding to weak bases and strong acids are similarly behaved, with the solution being acidic at the equivalence point and indicators such as methyl orange and bromothymol blue being most appropriate. Titrations between a weak acid and a weak base have titration curves which are very irregular.

  4. Acid strength - Wikipedia

    en.wikipedia.org/wiki/Acid_strength

    For example, acetic acid is a weak acid which has a = 1.75 x 10 −5. Its conjugate base is the acetate ion with K b = 10 −14 /K a = 5.7 x 10 −10 (from the relationship K a × K b = 10 −14), which certainly does not correspond to a strong base. The conjugate of a weak acid is often a weak base and vice versa.

  5. Neutralization (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Neutralization_(chemistry)

    Acetic acid is an example of a weak acid. The pH of the neutralized solution resulting from HA + OH − → H 2 O + A −. is not close to 7, as with a strong acid, but depends on the acid dissociation constant, K a, of the acid. The pH at the end-point or equivalence point in a titration may be calculated as follows.

  6. Gran plot - Wikipedia

    en.wikipedia.org/wiki/Gran_plot

    For a strong acid-strong base titration monitored by pH, we have at any i'th point in the titration = [+] [] where K w is the water autoprotolysis constant.. If titrating an acid of initial volume and concentration [+] with base of concentration [], then at any i'th point in the titration with titrant volume ,

  7. Henderson–Hasselbalch equation - Wikipedia

    en.wikipedia.org/wiki/Henderson–Hasselbalch...

    The Henderson–Hasselbalch equation relates the pH of a solution containing a mixture of the two components to the acid dissociation constant, K a of the acid, and the concentrations of the species in solution. [6] Simulated titration of an acidified solution of a weak acid (pK a = 4.7) with alkali

  8. Acid dissociation constant - Wikipedia

    en.wikipedia.org/wiki/Acid_dissociation_constant

    Nitric acid, with a pK value of around −1.7, behaves as a strong acid in aqueous solutions with a pH greater than 1. [23] At lower pH values it behaves as a weak acid. pK a values for strong acids have been estimated by theoretical means. [24] For example, the pK a value of aqueous HCl has been estimated as −9.3.

  9. Buffer solution - Wikipedia

    en.wikipedia.org/wiki/Buffer_solution

    When some strong acid is added to an equilibrium mixture of the weak acid and its conjugate base, hydrogen ions (H +) are added, and the equilibrium is shifted to the left, in accordance with Le Chatelier's principle. Because of this, the hydrogen ion concentration increases by less than the amount expected for the quantity of strong acid added.