Search results
Results from the WOW.Com Content Network
In numerical linear algebra, the Arnoldi iteration is an eigenvalue algorithm and an important example of an iterative method.Arnoldi finds an approximation to the eigenvalues and eigenvectors of general (possibly non-Hermitian) matrices by constructing an orthonormal basis of the Krylov subspace, which makes it particularly useful when dealing with large sparse matrices.
The Arnoldi iteration reduces to the Lanczos iteration for symmetric matrices. The corresponding Krylov subspace method is the minimal residual method (MinRes) of Paige and Saunders. Unlike the unsymmetric case, the MinRes method is given by a three-term recurrence relation. It can be shown that there is no Krylov subspace method for general ...
Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...
Modern iterative methods such as Arnoldi iteration can be used for finding one (or a few) eigenvalues of large sparse matrices or solving large systems of linear equations. They try to avoid matrix-matrix operations, but rather multiply vectors by the matrix and work with the resulting vectors.
The conjugate gradient method can be derived from several different perspectives, including specialization of the conjugate direction method [1] for optimization, and variation of the Arnoldi/Lanczos iteration for eigenvalue problems.
Basic solvers such as residual inverse iteration and successive linear problems. A solver based on polynomial interpolation that relies on PEP solvers. A solver based on rational interpolation (NLEIGS). MFN can be used to compute the action of a matrix function on a vector. A restarted Krylov solver.
The conjugate gradient method can be derived from several different perspectives, including specialization of the conjugate direction method for optimization, and variation of the Arnoldi/Lanczos iteration for eigenvalue problems. Despite differences in their approaches, these derivations share a common topic—proving the orthogonality of the ...
The Lanczos algorithm is most often brought up in the context of finding the eigenvalues and eigenvectors of a matrix, but whereas an ordinary diagonalization of a matrix would make eigenvectors and eigenvalues apparent from inspection, the same is not true for the tridiagonalization performed by the Lanczos algorithm; nontrivial additional steps are needed to compute even a single eigenvalue ...