Search results
Results from the WOW.Com Content Network
Showing wall boundary condition. The most common boundary that comes upon in confined fluid flow problems is the wall of the conduit. The appropriate requirement is called the no-slip boundary condition, wherein the normal component of velocity is fixed at zero, and the tangential component is set equal to the velocity of the wall. [1]
The no-slip condition is an empirical assumption that has been useful in modelling many macroscopic experiments. It was one of three alternatives that were the subject of contention in the 19th century, with the other two being the stagnant-layer (a thin layer of stationary fluid on which the rest of the fluid flows) and the partial slip (a finite relative velocity between solid and fluid ...
In fluid dynamics, the von Kármán constant (or Kármán's constant), named for Theodore von Kármán, is a dimensionless constant involved in the logarithmic law describing the distribution of the longitudinal velocity in the wall-normal direction of a turbulent fluid flow near a boundary with a no-slip condition. The equation for such ...
Consider situation solid wall parallel to the x-direction: Assumptions made and relations considered- The near wall flow is considered as laminar and the velocity varies linearly with distance from the wall; No slip condition: u = v = 0. In this we are applying the “wall functions” instead of the mesh points.
The thermal boundary layer thickness, , is the distance across a boundary layer from the wall to a point where the flow temperature has essentially reached the 'free stream' temperature, . This distance is defined normal to the wall in the y {\displaystyle y} -direction.
The no slip boundary condition at the pipe wall requires that u = 0 at r = R (radius of the pipe), which yields c 2 = GR 2 / 4μ . Thus we have finally the following parabolic velocity profile: = (). The maximum velocity occurs at the pipe centerline (r = 0), u max = GR 2 / 4μ .
This approach reduces the mesh requirement and computational efforts. Therefore, symmetry boundary is used at the periphery of the computational domain. All the solid boundaries in the computational domain are specified as viscous walls with no-slip wall boundary condition.
The boundary layer thickness, , is the distance normal to the wall to a point where the flow velocity has essentially reached the 'asymptotic' velocity, .Prior to the development of the Moment Method, the lack of an obvious method of defining the boundary layer thickness led much of the flow community in the later half of the 1900s to adopt the location , denoted as and given by