Search results
Results from the WOW.Com Content Network
To define a process calculus, one starts with a set of names (or channels) whose purpose is to provide means of communication. In many implementations, channels have rich internal structure to improve efficiency, but this is abstracted away in most theoretic models. In addition to names, one needs a means to form new processes from old ones.
A.M. – arithmetic mean. AP – arithmetic progression. arccos – inverse cosine function. arccosec – inverse cosecant function. (Also written as arccsc.) arccot – inverse cotangent function. arccsc – inverse cosecant function. (Also written as arccosec.) arcexc – inverse excosecant function. (Also written as arcexcsc, arcexcosec.)
For a non-holonomic process function, no such function may be defined. In other words, for a holonomic process function, λ may be defined such that dY = λδX is an exact differential. For example, thermodynamic work is a holonomic process function since the integrating factor λ = 1 / p (where p is pressure) will yield exact ...
More generally, if either function (say f) is compactly supported and the other is locally integrable, then the convolution f∗g is well-defined and continuous. Convolution of f and g is also well defined when both functions are locally square integrable on R and supported on an interval of the form [a, +∞) (or both supported on [−∞, a]).
The transfer function for a first-order process with dead time is = + (), where k p is the process gain, τ p is the time constant, θ is the dead time, and u(s) is a step change input. Converting this transfer function to the time domain results in
Thomae's function: is a function that is continuous at all irrational numbers and discontinuous at all rational numbers. It is also a modification of Dirichlet function and sometimes called Riemann function. Kronecker delta function: is a function of two variables, usually integers, which is 1 if they are equal, and 0 otherwise.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
A partial function from X to Y is thus a ordinary function that has as its domain a subset of X called the domain of definition of the function. If the domain of definition equals X, one often says that the partial function is a total function. In several areas of mathematics the term "function" refers to partial functions rather than to ...