Search results
Results from the WOW.Com Content Network
The orbit of a planet is an ellipse with the Sun at one of the two foci. A line segment joining a planet and the Sun sweeps out equal areas during equal intervals of time. The square of a planet's orbital period is proportional to the cube of the length of the semi-major axis of its orbit.
Most of the larger moons orbit their planets in prograde direction, matching the direction of planetary rotation; Neptune's moon Triton is the largest to orbit in the opposite, retrograde manner. [50] Most larger objects rotate around their own axes in the prograde direction relative to their orbit, though the rotation of Venus is retrograde. [51]
All eight planets in the Solar System orbit the Sun in the direction of the Sun's rotation, which is counterclockwise when viewed from above the Sun's north pole. Six of the planets also rotate about their axis in this same direction. The exceptions – the planets with retrograde rotation – are Venus and Uranus.
[1] [2] The low eccentricity and comparatively small size of its orbit give Venus the least range in distance between perihelion and aphelion of the planets: 1.46 million km. The planet orbits the Sun once every 225 days [3] and travels 4.54 au (679,000,000 km; 422,000,000 mi) in doing so, [4] giving an average orbital speed of 35 km/s (78,000 ...
The lunar orbit's major axis – the longest diameter of the orbit, joining its nearest and farthest points, the perigee and apogee, respectively – makes one complete revolution every 8.85 Earth years, or 3,232.6054 days, as it rotates slowly in the same direction as the Moon itself (direct motion) – meaning precesses eastward by 360°.
The planets rotate around invisible axes through their centres. A planet's rotation period is known as a stellar day. Most of the planets in the Solar System rotate in the same direction as they orbit the Sun, which is counter-clockwise as seen from above the Sun's north pole.
Ecliptic coordinates are convenient for specifying positions of Solar System objects, as most of the planets' orbits have small inclinations to the ecliptic, and therefore always appear relatively close to it on the sky. Because Earth's orbit, and hence the ecliptic, moves very little, it is a relatively fixed reference with respect to the stars.
After years of analysis, Kepler discovered that Mars's orbit was likely to be an ellipse, with the Sun at one of the ellipse's focal points. This, in turn, led to Kepler's discovery that all planets orbit the Sun in elliptical orbits, with the Sun at one of the two focal points. This became the first of Kepler's three laws of planetary motion.