Search results
Results from the WOW.Com Content Network
In ZF, a set is infinite if and only if the power set of its power set is a Dedekind-infinite set, having a proper subset equinumerous to itself. [4] If the axiom of choice is also true, then infinite sets are precisely the Dedekind-infinite sets. If an infinite set is a well-orderable set, then it has many well-orderings which are non-isomorphic.
Since set theorists work with infinite sets of arbitrarily large cardinalities, the default definition among this group of mathematicians of an enumeration of a set tends to be any arbitrary α-sequence exactly listing all of its elements. Indeed, in Jech's book, which is a common reference for set theorists, an enumeration is defined to be ...
Specifically, the power set of a countably infinite set is an uncountable set. Assuming the existence of an infinite set N consisting of all natural numbers and assuming the existence of the power set of any given set allows the definition of a sequence N, P(N), P(P(N)), P(P(P(N))), … of infinite sets where each set is the power set of the ...
The set S is the range of a partial computable function. The set S is the range of a total computable function, or empty. If S is infinite, the function can be chosen to be injective. The set S is the range of a primitive recursive function or empty. Even if S is infinite, repetition of values may be necessary in this case. Diophantine:
In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. [a] Equivalently, a set is countable if there exists an injective function from it into the natural numbers; this means that each element in the set may be associated to a unique natural number, or that the elements of the set can be counted one at a time ...
The set of all provable sentences in an effective axiomatic system is always a recursively enumerable set.If the system is suitably complex, like first-order arithmetic, then the set T of Gödel numbers of true sentences in the system will be a productive set, which means that whenever W is a recursively enumerable set of true sentences, there is at least one true sentence that is not in W.
The best known example of an uncountable set is the set of all real numbers; Cantor's diagonal argument shows that this set is uncountable. The diagonalization proof technique can also be used to show that several other sets are uncountable, such as the set of all infinite sequences of natural numbers (see: (sequence A102288 in the OEIS)), and the set of all subsets of the set ...
Cantor's diagonal argument (among various similar names [note 1]) is a mathematical proof that there are infinite sets which cannot be put into one-to-one correspondence with the infinite set of natural numbers – informally, that there are sets which in some sense contain more elements than there are positive integers.