Search results
Results from the WOW.Com Content Network
Low-density parity-check (LDPC) codes are a class of highly efficient linear block codes made from many single parity check (SPC) codes. They can provide performance very close to the channel capacity (the theoretical maximum) using an iterated soft-decision decoding approach, at linear time complexity in terms of their block length.
The on-line textbook: Information Theory, Inference, and Learning Algorithms, by David J.C. MacKay, contains chapters on elementary error-correcting codes; on the theoretical limits of error-correction; and on the latest state-of-the-art error-correcting codes, including low-density parity-check codes, turbo codes, and fountain codes.
Compute forward probabilities Compute backward probabilities β {\displaystyle \beta } Compute smoothed probabilities based on other information (i.e. noise variance for AWGN , bit crossover probability for binary symmetric channel )
Serial concatenated convolutional codes; Shaping codes; Slepian–Wolf coding; Snake-in-the-box; Soft-decision decoder; Soft-in soft-out decoder; Sparse graph code; Srivastava code; Stop-and-wait ARQ; Summation check
LDPC codes have no limitations of minimum distance, [34] that indirectly means that LDPC codes may be more efficient on relatively large code rates (e.g. 3/4, 5/6, 7/8) than turbo codes. However, LDPC codes are not the complete replacement: turbo codes are the best solution at the lower code rates (e.g. 1/6, 1/3, 1/2). [35] [36]
Specifically, the for loop will call a value's into_iter() method, which returns an iterator that in turn yields the elements to the loop. The for loop (or indeed, any method that consumes the iterator), proceeds until the next() method returns a None value (iterations yielding elements return a Some(T) value, where T is the element type).
Hardware-wise, this turbo code encoder consists of two identical RSC coders, C 1 and C 2, as depicted in the figure, which are connected to each other using a concatenation scheme, called parallel concatenation: In the figure, M is a memory register. The delay line and interleaver force input bits d k to appear in different sequences.
Here, the variable c is first written to in S1 and then variable c is written to again in statement S2. This output dependence can be represented by S1 →O S2. An output dependence can be seen by different iterations in a loop. The following code snippet shows an example of this case: