Search results
Results from the WOW.Com Content Network
If a and b are any two points within or at the surface of a given conductor, and given there is no flow of charge being exchanged between the two points, then the potential difference is zero between the two points. Thus, an equipotential would contain both points a and b as they have the same potential. Extending this definition, an ...
Circular contours are equipotential lines. Electric field lines leave the positive charge and enter the negative charge. ... is uniform surface charge density.
If C has a positive charge, the negative charges in the metal are attracted to it and move to the inner surface of the container, while the positive charges are repelled and move to the outside surface. If C has a negative charge, the charges have opposite polarity. Since the container was originally uncharged, the two regions have equal and ...
When a surface is immersed in a solution containing electrolytes, it develops a net surface charge.This is often because of ionic adsorption. Aqueous solutions universally contain positive and negative ions (cations and anions, respectively), which interact with partial charges on the surface, adsorbing to and thus ionizing the surface and creating a net surface charge. [9]
The work per unit of charge is defined by moving a negligible test charge between two points, and is expressed as the difference in electric potential at those points. The work can be done, for example, by electrochemical devices ( electrochemical cells ) or different metals junctions [ clarification needed ] generating an electromotive force .
Internally, the heads and tails of dipoles are adjacent and cancel. At the bounding surfaces, however, no cancellation occurs. Instead, on one surface the dipole heads create a positive surface charge, while at the opposite surface the dipole tails create a negative surface charge.
The electric potential energy of a system of point charges is defined as the work required to assemble this system of charges by bringing them close together, as in the system from an infinite distance.
The method of image charges (also known as the method of images and method of mirror charges) is a basic problem-solving tool in electrostatics.The name originates from the replacement of certain elements in the original layout with fictitious charges, which replicates the boundary conditions of the problem (see Dirichlet boundary conditions or Neumann boundary conditions).