enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. L'Hôpital's rule - Wikipedia

    en.wikipedia.org/wiki/L'Hôpital's_rule

    This means that if |g(x)| diverges to infinity as x approaches c and both f and g satisfy the hypotheses of L'Hôpital's rule, then no additional assumption is needed about the limit of f(x): It could even be the case that the limit of f(x) does not exist. In this case, L'Hopital's theorem is actually a consequence of Cesàro–Stolz. [9]

  3. Analyse des Infiniment Petits pour l'Intelligence des Lignes ...

    en.wikipedia.org/wiki/Analyse_des_Infiniment...

    Analyse des Infiniment Petits pour l'Intelligence des Lignes Courbes (literal translation: Analysis of the infinitely small to understand curves), 1696, is the first textbook published on the infinitesimal calculus of Leibniz. It was written by the French mathematician Guillaume de l'Hôpital, and treated only the subject of differential calculus.

  4. List of limits - Wikipedia

    en.wikipedia.org/wiki/List_of_limits

    This is a list of limits for common functions such as elementary functions. In this article, the terms a, b and c are constants with respect to x.

  5. Stolz–Cesàro theorem - Wikipedia

    en.wikipedia.org/wiki/Stolz–Cesàro_theorem

    Assume that () is a strictly monotone and divergent sequence (i.e. strictly increasing and approaching +, or strictly decreasing and approaching ) and the following limit exists: lim n → ∞ a n + 1 − a n b n + 1 − b n = l .

  6. Guillaume de l'Hôpital - Wikipedia

    en.wikipedia.org/wiki/Guillaume_de_l'Hôpital

    G. L'Hôpital, Analyse des Infiniment Petits pour l'Intelligence des Lignes Courbes, Paris, 1696; G. L'Hôpital, Analyse des infinement petits, Paris 1715; William Fox, Guillaume-François-Antoine de L'Hôpital, Catholic Encyclopedia, vol 7, New York, Robert Appleton Company, 1910; C. Truesdell The New Bernoulli Edition Isis, Vol. 49, No. 1 ...

  7. Limit inferior and limit superior - Wikipedia

    en.wikipedia.org/wiki/Limit_inferior_and_limit...

    In mathematical analysis, limit superior and limit inferior are important tools for studying sequences of real numbers.Since the supremum and infimum of an unbounded set of real numbers may not exist (the reals are not a complete lattice), it is convenient to consider sequences in the affinely extended real number system: we add the positive and negative infinities to the real line to give the ...

  8. Limit (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Limit_(mathematics)

    In mathematics, a limit is the value that a function (or sequence) approaches as the argument (or index) approaches some value. [1] Limits of functions are essential to calculus and mathematical analysis, and are used to define continuity, derivatives, and integrals.

  9. Limit of a function - Wikipedia

    en.wikipedia.org/wiki/Limit_of_a_function

    In particular, one can no longer talk about the limit of a function at a point, but rather a limit or the set of limits at a point. A function is continuous at a limit point p of and in its domain if and only if f(p) is the (or, in the general case, a) limit of f(x) as x tends to p. There is another type of limit of a function, namely the ...