Search results
Results from the WOW.Com Content Network
The question is whether or not, for all problems for which an algorithm can verify a given solution quickly (that is, in polynomial time), an algorithm can also find that solution quickly. Since the former describes the class of problems termed NP, while the latter describes P, the question is equivalent to asking whether all problems in NP are ...
Project Euler (named after Leonhard Euler) is a website dedicated to a series of computational problems intended to be solved with computer programs. [1] [2] The project attracts graduates and students interested in mathematics and computer programming.
Clearly, a #P problem must be at least as hard as the corresponding NP problem, since a count of solutions immediately tells if at least one solution exists, if the count is greater than zero. Surprisingly, some #P problems that are believed to be difficult correspond to easy (for example linear-time) P problems. [ 18 ]
There are 92 solutions. The problem was first posed in the mid-19th century. In the modern era, it is often used as an example problem for various computer programming techniques. The eight queens puzzle is a special case of the more general n queens problem of placing n non-attacking queens on an n×n chessboard.
Open problems around exact algorithms by Gerhard J. Woeginger, Discrete Applied Mathematics 156 (2008) 397–405. The RTA list of open problems – open problems in rewriting. The TLCA List of Open Problems – open problems in area typed lambda calculus
Toggle Solution subsection. 2.1 Strategy. 2.2 Examples. ... The 100 prisoners problem is a mathematical problem in probability theory and combinatorics. In this ...
When we recently wrote about the toughest math problems that have been solved, we mentioned one of the greatest achievements in 20th-century math: the solution to Fermat’s Last Theorem. Sir ...
In mathematics, the moving sofa problem or sofa problem is a two-dimensional idealization of real-life furniture-moving problems and asks for the rigid two-dimensional shape of the largest area that can be maneuvered through an L-shaped planar region with legs of unit width. [1] The area thus obtained is referred to as the sofa constant.