Search results
Results from the WOW.Com Content Network
Another sorting algorithm based on random numbers. If the list is not in order, it picks two items at random and swaps them, then checks to see if the list is sorted. The running time analysis of a bozosort is more difficult, but some estimates are found in H. Gruber's analysis of "perversely awful" randomized sorting algorithms. [1]
Finally, the sorting method has a simple parallel implementation, unlike the Fisher–Yates shuffle, which is sequential. A variant of the above method that has seen some use in languages that support sorting with user-specified comparison functions is to shuffle a list by sorting it with a comparison function that returns random values.
The following Python implementation [1] [circular reference] performs cycle sort on an array, counting the number of writes to that array that were needed to sort it. Python def cycle_sort ( array ) -> int : """Sort an array in place and return the number of writes.""" writes = 0 # Loop through the array to find cycles to rotate.
Timsort is a hybrid, stable sorting algorithm, derived from merge sort and insertion sort, designed to perform well on many kinds of real-world data. It was implemented by Tim Peters in 2002 for use in the Python programming language. The algorithm finds subsequences of the data that are already ordered (runs) and uses them to sort the ...
Shuffling can also be implemented by a sorting algorithm, namely by a random sort: assigning a random number to each element of the list and then sorting based on the random numbers. This is generally not done in practice, however, and there is a well-known simple and efficient algorithm for shuffling: the Fisher–Yates shuffle .
Recursively sort the "equal to" partition by the next character (key). Given we sort using bytes or words of length W bits, the best case is O(KN) and the worst case O(2 K N) or at least O(N 2) as for standard quicksort, given for unique keys N<2 K, and K is a hidden constant in all standard comparison sort algorithms including
An example of a list that proves this point is the list (2,3,4,5,1), which would only need to go through one pass of cocktail sort to become sorted, but if using an ascending bubble sort would take four passes. However one cocktail sort pass should be counted as two bubble sort passes.
It functions by comparing all odd/even indexed pairs of adjacent elements in the list and, if a pair is in the wrong order (the first is larger than the second) the elements are switched. The next step repeats this for even/odd indexed pairs (of adjacent elements). Then it alternates between odd/even and even/odd steps until the list is sorted.