enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bailey–Borwein–Plouffe formula - Wikipedia

    en.wikipedia.org/wiki/Bailey–Borwein–Plouffe...

    This does not compute the nth decimal digit of π (i.e., in base 10). [3] But another formula discovered by Plouffe in 2022 allows extracting the nth digit of π in decimal. [4] BBP and BBP-inspired algorithms have been used in projects such as PiHex [5] for calculating many digits of π using distributed computing. The existence of this ...

  3. Chudnovsky algorithm - Wikipedia

    en.wikipedia.org/wiki/Chudnovsky_algorithm

    The Chudnovsky algorithm is a fast method for calculating the digits of π, based on Ramanujan's π formulae.Published by the Chudnovsky brothers in 1988, [1] it was used to calculate π to a billion decimal places.

  4. Spigot algorithm - Wikipedia

    en.wikipedia.org/wiki/Spigot_algorithm

    A variant of the spigot approach uses an algorithm which can be used to compute a single arbitrary digit of the transcendental without computing the preceding digits: an example is the Bailey–Borwein–Plouffe formula, a digit extraction algorithm for π which produces base 16 digits. The inevitable truncation of the underlying infinite ...

  5. Gauss–Legendre algorithm - Wikipedia

    en.wikipedia.org/wiki/Gauss–Legendre_algorithm

    The arithmetic–geometric mean of two numbers, a 0 and b 0, is found by calculating the limit of the sequences + = +, + =, which both converge to the same limit. If = and = ⁡ then the limit is (⁡) where () is the complete elliptic integral of the first kind

  6. PiHex - Wikipedia

    en.wikipedia.org/wiki/PiHex

    PiHex was a distributed computing project organized by Colin Percival to calculate specific bits of π. [1] 1,246 contributors [2] used idle time slices on almost two thousand computers [citation needed] to make its calculations.

  7. Ramanujan–Sato series - Wikipedia

    en.wikipedia.org/wiki/Ramanujan–Sato_series

    The first expansion is the McKay–Thompson series of class 1A (OEIS: A007240) with a(0) = 744. Note that, as first noticed by J. McKay , the coefficient of the linear term of j ( τ ) almost equals 196883, which is the degree of the smallest nontrivial irreducible representation of the monster group , a relationship called monstrous moonshine .

  8. Transcendental number - Wikipedia

    en.wikipedia.org/wiki/Transcendental_number

    In other words, the n th digit of this number is 1 only if n is one of 1! = 1, 2! = 2, 3! = 6, 4! = 24, etc. Liouville showed that this number belongs to a class of transcendental numbers that can be more closely approximated by rational numbers than can any irrational algebraic number, and this class of numbers is called the Liouville numbers ...

  9. Chronology of computation of π - Wikipedia

    en.wikipedia.org/wiki/Chronology_of_computation...

    Finds a formula that allows the nth hexadecimal digit of pi to be calculated without calculating the preceding digits. 28 August 1995 Yasumasa Kanada and Daisuke Takahashi: HITAC S-3800/480 (dual CPU) [36] [37] 56.74 hours? 4,294,960,000: 11 October 1995 Yasumasa Kanada and Daisuke Takahashi: HITAC S-3800/480 (dual CPU) [38] [37] 116.63 hours ...