Search results
Results from the WOW.Com Content Network
The ideal gas equation can be rearranged to give an expression for the molar volume of an ideal gas: = = Hence, for a given temperature and pressure, the molar volume is the same for all ideal gases and is based on the gas constant: R = 8.314 462 618 153 24 m 3 ⋅Pa⋅K −1 ⋅mol −1, or about 8.205 736 608 095 96 × 10 −5 m 3 ⋅atm⋅K ...
kilogram per cubic meter (kg/m 3) volume charge density: coulomb per cubic meter (C/m 3) resistivity: ohm meter (Ω⋅m) sigma: summation operator area charge density: coulomb per square meter (C/m 2) electrical conductivity: siemens per meter (S/m) normal stress: pascal (Pa) scattering cross section: barn (10^-28 m^2)
The cubic metre (in Commonwealth English and international spelling as used by the International Bureau of Weights and Measures) or cubic meter (in American English) is the unit of volume in the International System of Units (SI). [1] Its symbol is m 3. [1] It is the volume of a cube with edges one metre in length.
Because the volume occupies three dimensions, if the metre (m) is chosen as a unit of length, the corresponding unit of volume is the cubic metre (m 3). The cubic metre is also a SI derived unit. [16] Therefore, volume has a unit dimension of L 3. [17] The metric units of volume uses metric prefixes, strictly in powers of ten. When applying ...
Specific volume is a property of materials, defined as the number of cubic meters occupied by one kilogram of a particular substance. The standard unit is the meter cubed per kilogram (m 3 /kg or m 3 ·kg −1). Sometimes specific volume is expressed in terms of the number of cubic centimeters occupied by one gram of a substance.
joule per cubic metre J/m 3: energy density: m −1 ⋅kg⋅s −2: volt per metre V/m electric field strength: m⋅kg⋅s −3 ⋅A −1: coulomb per cubic metre C/m 3: electric charge density: m −3 ⋅s⋅A coulomb per square metre C/m 2: surface charge density, electric flux density, electric displacement: m −2 ⋅s⋅A farad per metre F ...
This metric, typically denoted in watts per cubic meter (W/m 3), serves as a fundamental measure for evaluating the efficacy and capability of various devices, systems, and materials based on their spatial energy distribution. The concept of power density finds extensive application in physics, engineering, electronics, and energy technologies.
The specific weight, also known as the unit weight (symbol γ, the Greek letter gamma), is a volume-specific quantity defined as the weight W divided by the volume V of a material: = / Equivalently, it may also be formulated as the product of density, ρ, and gravity acceleration, g: = Its unit of measurement in the International System of Units (SI) is newton per cubic metre (N/m 3), with ...