Search results
Results from the WOW.Com Content Network
The periosteum is a membrane that covers the outer surface of all bones, [1] except at the articular surfaces (i.e. the parts within a joint space) of long bones. (At the joints of long bones the bone's outer surface is lined with "articular cartilage", a type of hyaline cartilage .)
It is called the periosteum, or the periosteal surface. During bone growth , the width of the bone increases as osteoblasts lay new bone tissue at the periosteum. To prevent the bone from becoming unnecessarily thick, osteoclasts resorb the bone from the endosteal side.
Volkmann's canals, also known as perforating holes or channels, are anatomic arrangements in cortical bones that allow blood vessels to enter the bones from periosteum.They interconnect the Haversian canals (running inside osteons) with each other and the periosteum.
This newly formed bone can be called "periosteal bone" as it originates from the transformed periosteum. However, considering its developmental pathway, it could be classified as "intramembranous bone". [8] After the formation of the periosteum, chondrocytes in the primary center of ossification begin to grow (hypertrophy).
This is covered by a membrane of connective tissue called the periosteum. Beneath the cortical bone layer is a layer of spongy cancellous bone. Inside this is the medullary cavity which has an inner core of bone marrow, it contains nutrients and help in formation of cells, made up of yellow marrow in the adult and red marrow in the child.
The periosteum is formed around the trabeculae by differentiating mesenchymal cells. The primary center of ossification is the area where bone growth occurs between the periosteum and the bone. Osteogenic cells that originate from the periosteum increase appositional growth and a bone collar is formed.
The periosteum is one source of precursor cells that develop into chondroblasts and osteoblasts that are essential to the healing of bone. Other sources of precursor cells are the bone marrow (when present), endosteum , small blood vessels , and fibroblasts .
Examples of periosteal reactive bone in selected specimens of Triceratops. A periosteal reaction can result from a large number of causes, including injury and chronic irritation due to a medical condition such as hypertrophic osteopathy, bone healing in response to fracture, chronic stress injuries, subperiosteal hematomas, osteomyelitis, and cancer of the bone.