Search results
Results from the WOW.Com Content Network
chemistry (ratio of sensible to latent energy absorbed during liquid-vapor phase change) [3] pH = (+) chemistry (the measure of the acidity or basicity of an aqueous solution) van 't Hoff factor: i = + ()
For example, if x is a quantity, then x c is the characteristic unit used to scale it. As an illustrative example, consider a first order differential equation with constant coefficients: + = (). In this equation the independent variable here is t, and the dependent variable is x.
Dimensionless quantities, or quantities of dimension one, [1] are quantities implicitly defined in a manner that prevents their aggregation into units of measurement. [ 2 ] [ 3 ] Typically expressed as ratios that align with another system, these quantities do not necessitate explicitly defined units .
Scaling of Navier–Stokes equation refers to the process of selecting the proper spatial scales – for a certain type of flow – to be used in the non-dimensionalization of the equation. Since the resulting equations need to be dimensionless, a suitable combination of parameters and constants of the equations and flow (domain ...
A United States Navy Aviation boatswain's mate tests the specific gravity of JP-5 fuel. Relative density, also called specific gravity, [1] [2] is a dimensionless quantity defined as the ratio of the density (mass of a unit volume) of a substance to the density of a given reference material.
For air with a pressure of 1 bar, the Prandtl numbers in the temperature range between −100 °C and +500 °C can be calculated using the formula given below. [2] The temperature is to be used in the unit degree Celsius. The deviations are a maximum of 0.1% from the literature values.
Since the reaction rate determines the reaction timescale, the exact formula for the Damköhler number varies according to the rate law equation. For a general chemical reaction A → B following the Power law kinetics of n-th order , the Damköhler number for a convective flow system is defined as:
This provides us with a method for calculating the expected values of many microscopic quantities. We add the quantity artificially to the microstate energies (or, in the language of quantum mechanics, to the Hamiltonian), calculate the new partition function and expected value, and then set λ to zero in the final