Search results
Results from the WOW.Com Content Network
Symbol Name Meaning SI unit of measure alpha: alpha particle: angular acceleration: radian per second squared (rad/s 2) fine-structure constant: unitless beta: velocity in terms of the speed of light c: unitless beta particle: gamma: Lorentz factor: unitless photon: gamma ray: shear strain: radian
Rate of change of velocity per unit time: the second time derivative of position m/s 2: L T −2: vector Angular acceleration: ω a: Change in angular velocity per unit time rad/s 2: T −2: pseudovector Angular momentum: L: Measure of the extent and direction an object rotates about a reference point kg⋅m 2 /s L 2 M T −1: conserved ...
the population mean or expected value in probability and statistics; a measure in measure theory; micro-, an SI prefix denoting 10 −6 (one millionth) Micrometre or micron (retired in 1967 as a standalone symbol, replaced by "μm" using the standard SI meaning) the coefficient of friction in physics; the service rate in queueing theory
¯ = sample mean of differences d 0 {\displaystyle d_{0}} = hypothesized population mean difference s d {\displaystyle s_{d}} = standard deviation of differences
Example of a cubic polynomial regression, which is a type of linear regression. Although polynomial regression fits a curve model to the data, as a statistical estimation problem it is linear, in the sense that the regression function E(y | x) is linear in the unknown parameters that are estimated from the data.
Since the velocity of the object is the derivative of the position graph, the area under the line in the velocity vs. time graph is the displacement of the object. (Velocity is on the y-axis and time on the x-axis. Multiplying the velocity by the time, the time cancels out, and only displacement remains.)
In physics, Torricelli's equation, or Torricelli's formula, is an equation created by Evangelista Torricelli to find the final velocity of a moving object with constant acceleration along an axis (for example, the x axis) without having a known time interval. The equation itself is: [1] = + where
v 2 is the final velocity of the object at the end of the time interval, and; v 1 is the initial velocity of the object when the time interval begins. Impulse has the same units and dimensions (MLT −1) as momentum. In the International System of Units, these are kg⋅m/s = N⋅s. In English engineering units, they are slug⋅ft/s = lbf⋅s.