enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gauss–Legendre quadrature - Wikipedia

    en.wikipedia.org/wiki/GaussLegendre_quadrature

    w i are quadrature weights, and; x i are the roots of the nth Legendre polynomial. This choice of quadrature weights w i and quadrature nodes x i is the unique choice that allows the quadrature rule to integrate degree 2n − 1 polynomials exactly. Many algorithms have been developed for computing GaussLegendre quadrature rules.

  3. Gauss–Legendre method - Wikipedia

    en.wikipedia.org/wiki/GaussLegendre_method

    GaussLegendre methods are implicit Runge–Kutta methods. More specifically, they are collocation methods based on the points of GaussLegendre quadrature. The GaussLegendre method based on s points has order 2s. [1] All GaussLegendre methods are A-stable. [2] The GaussLegendre method of order two is the implicit midpoint rule.

  4. List of Runge–Kutta methods - Wikipedia

    en.wikipedia.org/wiki/List_of_Runge–Kutta_methods

    These are named after Rehuel Lobatto [7] as a reference to the Lobatto quadrature rule, but were introduced by Byron L. Ehle in his thesis. [8] All are implicit methods, have order 2 s − 2 and they all have c 1 = 0 and c s = 1.

  5. Collocation method - Wikipedia

    en.wikipedia.org/wiki/Collocation_method

    The GaussLegendre methods use the points of GaussLegendre quadrature as collocation points. The GaussLegendre method based on s points has order 2s. [2] All GaussLegendre methods are A-stable. [3] In fact, one can show that the order of a collocation method corresponds to the order of the quadrature rule that one would get using the ...

  6. Gaussian quadrature - Wikipedia

    en.wikipedia.org/wiki/Gaussian_quadrature

    This exact rule is known as the GaussLegendre quadrature rule. The quadrature rule will only be an accurate approximation to the integral above if f (x) is well-approximated by a polynomial of degree 2n − 1 or less on [−1, 1]. The GaussLegendre quadrature rule is not typically used for integrable functions with endpoint singularities ...

  7. Pseudospectral optimal control - Wikipedia

    en.wikipedia.org/wiki/Pseudospectral_optimal_control

    There are a very large number of ideas that fall under the general banner of pseudospectral optimal control. [7] Examples of these are the Legendre pseudospectral method, the Chebyshev pseudospectral method, the Gauss pseudospectral method, the Ross-Fahroo pseudospectral method, the Bellman pseudospectral method, the flat pseudospectral method and many others.

  8. Gauss pseudospectral method - Wikipedia

    en.wikipedia.org/wiki/Gauss_pseudospectral_method

    An enhancement to the Chebyshev pseudospectral method that uses a Clenshaw–Curtis quadrature was developed. [18] The LPM uses Lagrange polynomials for the approximations, and LegendreGauss–Lobatto (LGL) points for the orthogonal collocation. A costate estimation procedure for the Legendre pseudospectral method was also developed. [19]

  9. Runge–Kutta methods - Wikipedia

    en.wikipedia.org/wiki/Runge–Kutta_methods

    The GaussLegendre method with s stages has order 2s, so its stability function is the Padé approximant with m = n = s. It follows that the method is A-stable. [34] This shows that A-stable Runge–Kutta can have arbitrarily high order. In contrast, the order of A-stable linear multistep methods cannot exceed two. [35]