Search results
Results from the WOW.Com Content Network
Essentially, encapsulation prevents external code from being concerned with the internal workings of an object. Encapsulation allows developers to present a consistent interface that is independent of its internal implementation. As one example, encapsulation can be used to hide the values or state of a structured data object inside a class.
Data encapsulation, also known as data hiding, is the mechanism whereby the implementation details of a class are kept hidden from the user. The user can only perform a restricted set of operations on the hidden members of the class by executing special functions commonly called methods to prevent attributes of objects from being easily viewed and accessed.
For example, a relational database is encapsulated in the sense that its only public interface is a query language (such as SQL), which hides all the internal machinery and data structures of the database management system. As such, encapsulation is a core principle of good software architecture, at every level of granularity.
For example, a parent class, A, can have two subclasses B and C. Both B and C's parent class is A, but B and C are two separate subclasses. Hybrid inheritance Hybrid inheritance is when a mix of two or more of the above types of inheritance occurs. An example of this is when a class A has a subclass B which has two subclasses, C and D.
In computer programming, field encapsulation involves providing methods that can be used to read from or write to the field rather than accessing the field directly. Sometimes these accessor methods are called getX and setX (where X is the field's name), which are also known as mutator methods.
Selenium was originally developed by Jason Huggins in 2004 as an internal tool at ThoughtWorks. [5] Huggins was later joined by other programmers and testers at ThoughtWorks, before Paul Hammant joined the team and steered the development of the second mode of operation that would later become "Selenium Remote Control" (RC).
In computer networks, a tunneling protocol is a communication protocol which allows for the movement of data from one network to another. They can, for example, allow private network communications to be sent across a public network (such as the Internet), or for one network protocol to be carried over an incompatible network, through a process called encapsulation.
For example, in the IP suite, the contents of a web page are encapsulated with an HTTP header, then by a TCP header, an IP header, and, finally, by a frame header and trailer. The frame is forwarded to the destination node as a stream of bits , where it is decapsulated into the respective PDUs and interpreted at each layer by the receiving node.