Search results
Results from the WOW.Com Content Network
In biochemistry, denaturation is a process in which proteins or nucleic acids lose folded structure present in their native state due to various factors, including application of some external stress or compound, such as a strong acid or base, a concentrated inorganic salt, an organic solvent (e.g., alcohol or chloroform), agitation and radiation, or heat. [3]
Thermus aquaticus is a species of bacteria that can tolerate high temperatures, one of several thermophilic bacteria that belong to the Deinococcota phylum. It is the source of the heat-resistant enzyme Taq DNA polymerase, one of the most important enzymes in molecular biology because of its use in the polymerase chain reaction (PCR) DNA amplification technique.
T. aquaticus is a bacterium that lives in hot springs and hydrothermal vents, and Taq polymerase was identified [1] as an enzyme able to withstand the protein-denaturing conditions (high temperature) required during PCR. [2] Therefore, it replaced the DNA polymerase from E. coli originally used in PCR. [3]
Heat shock proteins induced by the HSR can help prevent protein aggregation that is associated with common neurodegenerative diseases such as Alzheimer's, Huntington's, or Parkinson's disease. [8] The diagram depicts actions taken when a stress is introduced to the cell. Stress will induce HSF-1 and cause proteins to misfold.
At certain points of the membrane, side chains linked by covalent bonds and a monolayer are found at these points. Thus, the membrane is much more stable and resistant to temperature alterations than the acidic bilayers present in eukaryotic organisms and bacteria. Proteins: denature at elevated temperatures and so also must adapt. Protein ...
The systems that activate the response to environmental change have many control elements. These control elements can be specific to one gene or they can control a large group of genes. When control elements control a large group of genes it is called a regulon. A regulon is a group of genes that are all regulated by the same control pattern.
In humans, the C-type lysozyme enzyme is encoded by the LYZ gene. [3] [4] Hen egg white lysozyme is thermally stable, with a melting point reaching up to 72 °C at pH 5.0. [5] However, lysozyme in human milk loses activity very quickly at that temperature. [6] Hen egg white lysozyme maintains its activity in a large range of pH (6–9). [7]
An extremozyme is an enzyme, often created by archaea, which are known prokaryotic extremophiles that can function under extreme environments. Examples of such are those in highly acidic/basic conditions, high/low temperatures, high salinity, or other factors, that would otherwise denature typical enzymes (e.g. catalase, rubisco, carbonic anhydrase). [1]