Search results
Results from the WOW.Com Content Network
In geometry, a set of points in space are coplanar if there exists a geometric plane that contains them all. For example, three points are always coplanar, and if the points are distinct and non-collinear, the plane they determine is unique. However, a set of four or more distinct points will, in general, not lie in a single plane.
e 1, e 2, e 3 to the coordinate curves (left), dual basis, covector basis, or reciprocal basis e 1, e 2, e 3 to coordinate surfaces (right), in 3-d general curvilinear coordinates (q 1, q 2, q 3), a tuple of numbers to define a point in a position space. Note the basis and cobasis coincide only when the basis is orthonormal. [1] [specify]
Coplanar waveguides play an important role in the field of solid state quantum computing, e.g. for the coupling of microwave photons to a superconducting qubit.In particular the research field of circuit quantum electrodynamics was initiated with coplanar waveguide resonators as crucial elements that allow for high field strength and thus strong coupling to a superconducting qubit by confining ...
An animation of the figure-8 solution to the three-body problem over a single period T ≃ 6.3259 [13] 20 examples of periodic solutions to the three-body problem. In the 1970s, Michel Hénon and Roger A. Broucke each found a set of solutions that form part of the same family of solutions: the Broucke–Hénon–Hadjidemetriou family. In this ...
A classic example of specular reflection is a mirror, which is specifically designed for specular reflection. In addition to visible light , specular reflection can be observed in the ionospheric reflection of radiowaves and the reflection of radio- or microwave radar signals by flying objects.
An example of a covariant equation is the Lorentz force equation of motion of a charged particle in an electromagnetic field (a generalization of Newton's second law) m d u a d s = q F a b u b , {\displaystyle m{\frac {du^{a}}{ds}}=qF^{ab}u_{b},} [ citation needed ]
[1] [2] [3] In classical mechanics for instance, in the action formulation, extremal solutions to the variational principle are on shell and the Euler–Lagrange equations give the on-shell equations. Noether's theorem regarding differentiable symmetries of physical action and conservation laws is another on-shell theorem.
Proclus attributes a definition of parallel lines as equidistant lines to Posidonius and quotes Geminus in a similar vein. Simplicius also mentions Posidonius' definition as well as its modification by the philosopher Aganis. [7] At the end of the nineteenth century, in England, Euclid's Elements was still the standard textbook in secondary ...