enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    A formula for computing the trigonometric identities for the one-third angle exists, but it requires finding the zeroes of the cubic equation 4x 3 − 3x + d = 0, where is the value of the cosine function at the one-third angle and d is the known value of the cosine function at the full angle.

  3. Exact trigonometric values - Wikipedia

    en.wikipedia.org/wiki/Exact_trigonometric_values

    The trigonometric functions of angles that are multiples of 15°, 18°, or 22.5° have simple algebraic values. These values are listed in the following table for angles from 0° to 45°. [1] In the table below, the label "Undefined" represents a ratio :

  4. Proofs of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_trigonometric...

    This geometric argument relies on definitions of arc length and area, which act as assumptions, so it is rather a condition imposed in construction of trigonometric functions than a provable property. [2] For the sine function, we can handle other values. If θ > π /2, then θ > 1. But sin θ ≤ 1 (because of the Pythagorean identity), so sin ...

  5. Trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/Trigonometric_functions

    Basis of trigonometry: if two right triangles have equal acute angles, they are similar, so their corresponding side lengths are proportional.. In mathematics, the trigonometric functions (also called circular functions, angle functions or goniometric functions) [1] are real functions which relate an angle of a right-angled triangle to ratios of two side lengths.

  6. Pythagorean trigonometric identity - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_trigonometric...

    By the periodicity identities we can say if the formula is true for −π < θ ≤ π then it is true for all real θ. Next we prove the identity in the range ⁠ π / 2 ⁠ < θ ≤ π. To do this we let t = θ − ⁠ π / 2 ⁠, t will now be in the range 0 < t ≤ π/2. We can then make use of squared versions of some basic shift identities ...

  7. Zero to the power of zero - Wikipedia

    en.wikipedia.org/wiki/Zero_to_the_power_of_zero

    Zero to the power of zero, denoted as 0 0, is a mathematical expression that can take different values depending on the context. In certain areas of mathematics, such as combinatorics and algebra, 0 0 is conventionally defined as 1 because this assignment simplifies many formulas and ensures consistency in operations involving exponents.

  8. Spherical law of cosines - Wikipedia

    en.wikipedia.org/wiki/Spherical_law_of_cosines

    As a special case, for C = ⁠ π / 2 ⁠, then cos C = 0, and one obtains the spherical analogue of the Pythagorean theorem: cos ⁡ c = cos ⁡ a cos ⁡ b {\displaystyle \cos c=\cos a\cos b\,} If the law of cosines is used to solve for c , the necessity of inverting the cosine magnifies rounding errors when c is small.

  9. Mnemonics in trigonometry - Wikipedia

    en.wikipedia.org/wiki/Mnemonics_in_trigonometry

    The letters ASTC signify which of the trigonometric functions are positive, starting in the top right 1st quadrant and moving counterclockwise through quadrants 2 to 4. [5] Quadrant 1 (angles from 0 to 90 degrees, or 0 to π/2 radians): All trigonometric functions are positive in this quadrant.