Ads
related to: to the nth degree meaning in math example problems worksheet pdf 7th grade
Search results
Results from the WOW.Com Content Network
"Nth Degree" (song), a song by New York City band Morningwood; A mathematically specious phrase intended to convey that something is raised to a very high exponent (as in "to the n th degree"), where n is assumed to be a relatively high number (even though by definition it is unspecified and may be large or small)
A root of degree 2 is called a square root and a root of degree 3, a cube root. Roots of higher degree are referred by using ordinal numbers, as in fourth root, twentieth root, etc. The computation of an n th root is a root extraction. For example, 3 is a square root of 9, since 3 2 = 9, and −3 is also a square root of 9, since (−3) 2 = 9.
Möbius μ function: Sum of the nth primitive roots of unity, it depends on the prime factorization of n. Prime omega functions; Chebyshev functions; Liouville function, λ(n) = (–1) Ω(n) Von Mangoldt function, Λ(n) = log p if n is a positive power of the prime p; Carmichael function
In mathematics, a homogeneous function is a function of several variables such that the following holds: If each of the function's arguments is multiplied by the same scalar, then the function's value is multiplied by some power of this scalar; the power is called the degree of homogeneity, or simply the degree.
For example, a degree two polynomial in two variables, such as + +, is called a "binary quadratic": binary due to two variables, quadratic due to degree two. [ a ] There are also names for the number of terms, which are also based on Latin distributive numbers, ending in -nomial ; the common ones are monomial , binomial , and (less commonly ...
The n th roots of unity are, by definition, the roots of the polynomial x n − 1, and are thus algebraic numbers. As this polynomial is not irreducible (except for n = 1), the primitive n th roots of unity are roots of an irreducible polynomial (over the integers) of lower degree, called the n th cyclotomic polynomial, and often denoted Φ n.
The original definition of ordinal numbers, found for example in the Principia Mathematica, defines the order type of a well-ordering as the set of all well-orderings similar (order-isomorphic) to that well-ordering: in other words, an ordinal number is genuinely an equivalence class of well-ordered sets.
In number theory, a cyclotomic field is a number field obtained by adjoining a complex root of unity to , the field of rational numbers. [1]Cyclotomic fields played a crucial role in the development of modern algebra and number theory because of their relation with Fermat's Last Theorem.
Ads
related to: to the nth degree meaning in math example problems worksheet pdf 7th grade