Search results
Results from the WOW.Com Content Network
The Euler–Lagrange equation was developed in connection with their studies of the tautochrone problem. The Euler–Lagrange equation was developed in the 1750s by Euler and Lagrange in connection with their studies of the tautochrone problem. This is the problem of determining a curve on which a weighted particle will fall to a fixed point in ...
Hilbert was the first to give good conditions for the Euler–Lagrange equations to give a stationary solution. Within a convex area and a positive thrice differentiable Lagrangian the solutions are composed of a countable collection of sections that either go along the boundary or satisfy the Euler–Lagrange equations in the interior.
[4] [5] Joseph-Louis Lagrange studied the equations of motion in connection to the principle of least action in 1760, later in a treaty of fluid mechanics in 1781, [6] and thirdly in his book Mécanique analytique. [5] In this book Lagrange starts with the Lagrangian specification but later converts them into the Eulerian specification. [5]
A Lagrangian density L (or, simply, a Lagrangian) of order r is defined as an n-form, n = dim X, on the r-order jet manifold J r Y of Y.. A Lagrangian L can be introduced as an element of the variational bicomplex of the differential graded algebra O ∗ ∞ (Y) of exterior forms on jet manifolds of Y → X.
Euler equations (fluid dynamics) Euler's equations (rigid body dynamics) Euler–Bernoulli beam equation Euler–Lagrange equation Euler–Darboux equation [10] Euler–Poisson–Darboux equation Euler–Tricomi equation: Fluid dynamics Rigid body dynamics Solid mechanics Calculus of variations Calculus Calculus Calculus: Leonhard Euler ...
This is well illustrated by the non-linear Euler–Lagrange equations in the calculus of variations: although Euler developed the one variable equations to understand geodesics, defined independently of an embedding, one of Lagrange's main applications of the two variable equations was to minimal surfaces, a concept that can only be defined in ...
This is an example of an equation that holds off shell, since it is true for any fields configuration regardless of whether it respects the equations of motion (in this case, the Euler–Lagrange equation given above). However, we can derive an on shell equation by simply substituting the Euler–Lagrange equation:
The incompressible Euler equations consist of Cauchy equations for conservation of mass and balance of momentum, together with the incompressibility condition that the flow velocity is divergence-free. The compressible Euler equations consist of equations for conservation of mass, balance of momentum, and balance of energy, together with a ...