Search results
Results from the WOW.Com Content Network
The optical properties of a material define how it interacts with light. The optical properties of matter are studied in optical physics (a subfield of optics) and applied in materials science. The optical properties of matter include: Refractive index; Dispersion; Transmittance and Transmission coefficient; Absorption; Scattering; Turbidity
An optical fiber is a cylindrical dielectric waveguide that transmits light along its axis by the process of total internal reflection. The fiber consists of a core surrounded by a cladding layer. To confine the optical signal in the core, the refractive index of the core must be greater than that of
Researchers in optical physics use and develop light sources that span the electromagnetic spectrum from microwaves to X-rays. The field includes the generation and detection of light, linear and nonlinear optical processes, and spectroscopy. Lasers and laser spectroscopy have transformed optical science.
These properties account for the fact that optical rotatory dispersion and circular dichroism are widely used in organic and inorganic chemistry and in biochemistry. In the absence of magnetic fields, only chiral substances exhibit optical rotatory dispersion and circular dichroism.
The mathematical behaviour then becomes linear, allowing optical components and systems to be described by simple matrices. This leads to the techniques of Gaussian optics and paraxial ray tracing, which are used to find basic properties of optical systems, such as approximate image and object positions and magnifications. [37]
Some plastics also have more advantageous optical properties than glass, such as better transmission of visible light and greater absorption of ultraviolet light. [6] Some plastics have a greater index of refraction than most types of glass; this is useful in the making of corrective lenses shaped to correct various vision abnormalities such as ...
The optical properties of all liquid and solid materials change as a function of the wavelength of light used to measure them. This change as a function of wavelength is called the dispersion of the optical properties.
In biology, homochirality is a common property of amino acids and carbohydrates. The chiral protein-making amino acids, which are translated through the ribosome from genetic coding, occur in the L form. However, D-amino acids are also found in nature. The monosaccharides (carbohydrate-units) are commonly found in D-configuration.