enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bernoulli's principle - Wikipedia

    en.wikipedia.org/wiki/Bernoulli's_principle

    Bernoulli's principle can be used to calculate the lift force on an airfoil, if the behaviour of the fluid flow in the vicinity of the foil is known. For example, if the air flowing past the top surface of an aircraft wing is moving faster than the air flowing past the bottom surface, then Bernoulli's principle implies that the pressure on the ...

  3. Lift (force) - Wikipedia

    en.wikipedia.org/wiki/Lift_(force)

    An airfoil affects the speed and direction of the flow over a wide area, producing a pattern called a velocity field. When an airfoil produces lift, the flow ahead of the airfoil is deflected upward, the flow above and below the airfoil is deflected downward leaving the air far behind the airfoil in the same state as the oncoming flow far ahead.

  4. Foil (fluid mechanics) - Wikipedia

    en.wikipedia.org/wiki/Foil_(fluid_mechanics)

    Streamlines around a NACA 0012 airfoil at moderate angle of attack. A foil generates lift primarily because of its shape and angle of attack.When oriented at a suitable angle, the foil deflects the oncoming fluid, resulting in a force on the foil in the direction opposite to the deflection.

  5. Thickness-to-chord ratio - Wikipedia

    en.wikipedia.org/wiki/Thickness-to-chord_ratio

    At speeds approaching the speed of sound, the effects of Bernoulli's principle over curves on the wing and fuselage can accelerate the local flow to supersonic speeds. This creates a shock wave that produces a powerful form of drag known as wave drag , and gives rise to the concept of the sound barrier .

  6. Kutta–Joukowski theorem - Wikipedia

    en.wikipedia.org/wiki/Kutta–Joukowski_theorem

    The Kutta–Joukowski theorem is a fundamental theorem in aerodynamics used for the calculation of lift of an airfoil (and any two-dimensional body including circular cylinders) translating in a uniform fluid at a constant speed so large that the flow seen in the body-fixed frame is steady and unseparated.

  7. Dynamic pressure - Wikipedia

    en.wikipedia.org/wiki/Dynamic_pressure

    Dynamic pressure is one of the terms of Bernoulli's equation, which can be derived from the conservation of energy for a fluid in motion. [1] At a stagnation point the dynamic pressure is equal to the difference between the stagnation pressure and the static pressure, so the dynamic pressure in a flow field can be measured at a stagnation point ...

  8. Coandă effect - Wikipedia

    en.wikipedia.org/wiki/Coandă_effect

    The surface pressure distribution is then calculated using Bernoulli equation. Let us note the pressure ( p a ) and the velocity ( v a ) along the free streamline at the ambient pressure, and γ the angle along the wall which is zero in A and θ in B.

  9. Pressure coefficient - Wikipedia

    en.wikipedia.org/wiki/Pressure_coefficient

    Using Bernoulli's equation, ... An airfoil at a given angle of attack will have what is called a pressure distribution. This pressure distribution is simply the ...