enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Genus (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Genus_(mathematics)

    The non-orientable genus, demigenus, or Euler genus of a connected, non-orientable closed surface is a positive integer representing the number of cross-caps attached to a sphere. Alternatively, it can be defined for a closed surface in terms of the Euler characteristic χ, via the relationship χ = 2 − k , where k is the non-orientable genus.

  3. Jacobian variety - Wikipedia

    en.wikipedia.org/wiki/Jacobian_variety

    The Jacobian of a curve over an arbitrary field was constructed by Weil (1948) as part of his proof of the Riemann hypothesis for curves over a finite field. The Abel–Jacobi theorem states that the torus thus built is a variety, the classical Jacobian of a curve, that indeed parametrizes the degree 0 line bundles, that is, it can be ...

  4. Euler characteristic - Wikipedia

    en.wikipedia.org/wiki/Euler_characteristic

    In mathematics, and more specifically in algebraic topology and polyhedral combinatorics, the Euler characteristic (or Euler number, or Euler–Poincaré characteristic) is a topological invariant, a number that describes a topological space's shape or structure regardless of the way it is bent.

  5. Algebraic variety - Wikipedia

    en.wikipedia.org/wiki/Algebraic_variety

    The curve has genus one (genus formula); in particular, it is not isomorphic to the projective line P 1, which has genus zero. Using genus to distinguish curves is very basic: in fact, the genus is the first invariant one uses to classify curves (see also the construction of moduli of algebraic curves ).

  6. Geometric genus - Wikipedia

    en.wikipedia.org/wiki/Geometric_genus

    The algebraic definition of genus agrees with the topological notion. On a nonsingular curve, the canonical line bundle has degree 2g − 2. The notion of genus features prominently in the statement of the Riemann–Roch theorem (see also Riemann–Roch theorem for algebraic curves) and of the Riemann–Hurwitz formula.

  7. Genus g surface - Wikipedia

    en.wikipedia.org/wiki/Genus_g_surface

    The genus (sometimes called the demigenus or Euler genus) of a connected non-orientable closed surface is a positive integer representing the number of cross-caps attached to a sphere. Alternatively, it can be defined for a closed surface in terms of the Euler characteristic χ, via the relationship χ = 2 − g, where g is the non-orientable ...

  8. Adjunction formula - Wikipedia

    en.wikipedia.org/wiki/Adjunction_formula

    The genus-degree formula for plane curves can be deduced from the adjunction formula. [2] Let C ⊂ P 2 be a smooth plane curve of degree d and genus g. Let H be the class of a hyperplane in P 2, that is, the class of a line. The canonical class of P 2 is −3H.

  9. Coherent sheaf cohomology - Wikipedia

    en.wikipedia.org/wiki/Coherent_sheaf_cohomology

    For example, if is a smooth projective curve over an algebraically closed field , the genus of is defined to be the dimension of the -vector space (,). When k {\displaystyle k} is the field of complex numbers , this agrees with the genus of the space X ( C ) {\displaystyle X(\mathbb {C} )} of complex points in its classical (Euclidean) topology.