enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Torsion constant - Wikipedia

    en.wikipedia.org/wiki/Torsion_constant

    The torsion constant or torsion coefficient is a geometrical property of a bar's cross-section. It is involved in the relationship between angle of twist and applied torque along the axis of the bar, for a homogeneous linear elastic bar. The torsion constant, together with material properties and length, describes a bar's torsional stiffness.

  3. Stiffness - Wikipedia

    en.wikipedia.org/wiki/Stiffness

    is the torsion constant for the section. Note that the torsional stiffness has dimensions [force] * [length] / [angle], so that its SI units are N*m/rad. For the special case of unconstrained uniaxial tension or compression, Young's modulus can be thought of as a measure of the stiffness of a structure.

  4. Bending - Wikipedia

    en.wikipedia.org/wiki/Bending

    This means that the shear force is zero, and that no torsional or axial loads are present. The material is isotropic (or orthotropic) and homogeneous. The material obeys Hooke's law (it is linearly elastic and will not deform plastically). The beam is initially straight with a cross section that is constant throughout the beam length.

  5. Torsion (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Torsion_(mechanics)

    Torsion of a square section bar Example of torsion mechanics. In the field of solid mechanics, torsion is the twisting of an object due to an applied torque [1] [2].Torsion could be defined as strain [3] [4] or angular deformation [5], and is measured by the angle a chosen section is rotated from its equilibrium position [6].

  6. Section modulus - Wikipedia

    en.wikipedia.org/wiki/Section_modulus

    In solid mechanics and structural engineering, section modulus is a geometric property of a given cross-section used in the design of beams or flexural members.Other geometric properties used in design include: area for tension and shear, radius of gyration for compression, and second moment of area and polar second moment of area for stiffness.

  7. Bending stiffness - Wikipedia

    en.wikipedia.org/wiki/Bending_stiffness

    The bending stiffness is the resistance of a member against bending deflection/deformation. It is a function of the Young's modulus E {\displaystyle E} , the second moment of area I {\displaystyle I} of the beam cross-section about the axis of interest, length of the beam and beam boundary condition.

  8. Euler–Bernoulli beam theory - Wikipedia

    en.wikipedia.org/wiki/Euler–Bernoulli_beam_theory

    The quantity is the extensional stiffness, is the coupled extensional-bending stiffness, and is the bending stiffness. For the situation where the beam has a uniform cross-section and no axial load, the governing equation for a large-rotation Euler–Bernoulli beam is

  9. Second polar moment of area - Wikipedia

    en.wikipedia.org/wiki/Second_polar_moment_of_area

    The second polar moment of area, also known (incorrectly, colloquially) as "polar moment of inertia" or even "moment of inertia", is a quantity used to describe resistance to torsional deformation (), in objects (or segments of an object) with an invariant cross-section and no significant warping or out-of-plane deformation. [1]